/* Copy x to y using packed storage. The vector x is an element of S, with the 's' components stored in unpacked storage. On return, x is copied to y with the 's' components stored in packed storage and the off-diagonal entries scaled by sqrt(2). */ func pack(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, opts ...la_.Option) (err error) { /*DEBUGGED*/ err = nil mnl := la_.GetIntOpt("mnl", 0, opts...) offsetx := la_.GetIntOpt("offsetx", 0, opts...) offsety := la_.GetIntOpt("offsety", 0, opts...) nlq := mnl + dims.At("l")[0] + dims.Sum("q") blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx}, &la_.IOpt{"offsety", offsety}) iu, ip := offsetx+nlq, offsety+nlq for _, n := range dims.At("s") { for k := 0; k < n; k++ { blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", iu + k*(n+1)}, &la_.IOpt{"offsety", ip}) y.SetIndex(ip, (y.GetIndex(ip) / math.Sqrt(2.0))) ip += n - k } iu += n * n } np := dims.SumPacked("s") blas.ScalFloat(y, math.Sqrt(2.0), &la_.IOpt{"n", np}, &la_.IOpt{"offset", offsety + nlq}) return }
// Solves a pair of primal and dual cone programs using custom KKT solver and constraint // interfaces MatrixG and MatrixA // func ConeLpCustomMatrix(c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix, A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { err = nil if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if h == nil || h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") //cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } // Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G. indq := make([]int, 0) indq = append(indq, dims.At("l")[0]) for _, k := range dims.At("q") { indq = append(indq, indq[len(indq)-1]+k) } // Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G. inds := make([]int, 0) inds = append(inds, indq[len(indq)-1]) for _, k := range dims.At("s") { inds = append(inds, inds[len(inds)-1]+k*k) } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } if kktsolver == nil { err = errors.New("nil kktsolver not allowed.") return } var mA MatrixVarA var mG MatrixVarG if G == nil { mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims} } else { mG = &matrixIfG{G} } if A == nil { mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())} } else { mA = &matrixIfA{A} } var mc = &matrixVar{c} var mb = &matrixVar{b} return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart) }
// Solves a pair of primal and dual cone programs using custom KKT solver. // func ConeLpCustomKKT(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") //cdim_diag := dims.Sum("l", "q", "s") if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } mA := &matrixVarA{A} mG := &matrixVarG{G, dims} mc := &matrixVar{c} mb := &matrixVar{b} return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart) }
// Solves a pair of primal and dual cone programs // // minimize c'*x // subject to G*x + s = h // A*x = b // s >= 0 // // maximize -h'*z - b'*y // subject to G'*z + A'*y + c = 0 // z >= 0. // // The inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. // The next N cones are second order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{G.Rows()}, q: []int{}, s: []int{}. // // Arguments primalstart, dualstart are optional starting points for primal and // dual problems. If non-nil then primalstart is a FloatMatrixSet having two entries. // // primalstart.At("x")[0] starting point for x // primalstart.At("s")[0] starting point for s // dualstart.At("y")[0] starting point for y // dualstart.At("z")[0] starting point for z // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] solution for x // Result.At("y")[0] solution for y // Result.At("s")[0] solution for s // Result.At("z")[0] solution for z // func ConeLp(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if c.Rows() < 1 { err = errors.New("No variables, 'c' must have at least one row") return } if h == nil || h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "qr" } else { solvername = "chol2" } } var factor kktFactor var kktsolver KKTConeSolver = nil if kktfunc, ok := lpsolvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, 0) if err != nil { return nil, err } kktsolver = func(W *sets.FloatMatrixSet) (KKTFunc, error) { return factor(W, nil, nil) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } //return ConeLpCustom(c, &mG, h, &mA, b, dims, kktsolver, solopts, primalstart, dualstart) c_e := &matrixVar{c} G_e := &matrixVarG{G, dims} A_e := &matrixVarA{A} b_e := &matrixVar{b} return conelp_problem(c_e, G_e, h, A_e, b_e, dims, kktsolver, solopts, primalstart, dualstart) }
// Solution of KKT equations by a dense LDL factorization of the // 3 x 3 system. // // Returns a function that (1) computes the LDL factorization of // // [ H A' GG'*W^{-1} ] // [ A 0 0 ], // [ W^{-T}*GG 0 -I ] // // given H, Df, W, where GG = [Df; G], and (2) returns a function for // solving // // [ H A' GG' ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy ] = [ by ]. // [ GG 0 -W'*W ] [ uz ] [ bz ] // // H is n x n, A is p x n, Df is mnl x n, G is N x n where // N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ). // func kktLdl(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) { p, n := A.Size() ldK := n + p + mnl + dims.At("l")[0] + dims.Sum("q") + dims.SumPacked("s") K := matrix.FloatZeros(ldK, ldK) ipiv := make([]int32, ldK) u := matrix.FloatZeros(ldK, 1) g := matrix.FloatZeros(mnl+G.Rows(), 1) //checkpnt.AddMatrixVar("u", u) //checkpnt.AddMatrixVar("K", K) factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) { var err error = nil // Zero K for each call. blas.ScalFloat(K, 0.0) if H != nil { K.SetSubMatrix(0, 0, H) } K.SetSubMatrix(n, 0, A) for k := 0; k < n; k++ { // g is (mnl + G.Rows(), 1) matrix, Df is (mnl, n), G is (N, n) if mnl > 0 { // set values g[0:mnl] = Df[,k] g.SetIndexesFromArray(Df.GetColumnArray(k, nil), matrix.MakeIndexSet(0, mnl, 1)...) } // set values g[mnl:] = G[,k] g.SetIndexesFromArray(G.GetColumnArray(k, nil), matrix.MakeIndexSet(mnl, mnl+g.Rows(), 1)...) scale(g, W, true, true) if err != nil { //fmt.Printf("scale error: %s\n", err) } pack(g, K, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsety", k*ldK + n + p}) } setDiagonal(K, n+p, n+n, ldK, ldK, -1.0) err = lapack.Sytrf(K, ipiv) if err != nil { return nil, err } solve := func(x, y, z *matrix.FloatMatrix) (err error) { // Solve // // [ H A' GG'*W^{-1} ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy [ = [ by ] // [ W^{-T}*GG 0 -I ] [ W*uz ] [ W^{-T}*bz ] // // and return ux, uy, W*uz. // // On entry, x, y, z contain bx, by, bz. On exit, they contain // the solution ux, uy, W*uz. err = nil blas.Copy(x, u) blas.Copy(y, u, &la.IOpt{"offsety", n}) err = scale(z, W, true, true) if err != nil { return } err = pack(z, u, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsety", n + p}) if err != nil { return } err = lapack.Sytrs(K, u, ipiv) if err != nil { return } blas.Copy(u, x, &la.IOpt{"n", n}) blas.Copy(u, y, &la.IOpt{"n", p}, &la.IOpt{"offsetx", n}) err = unpack(u, z, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsetx", n + p}) return } return solve, err } return factor, nil }
// Solution of KKT equations by reduction to a 2 x 2 system, a QR // factorization to eliminate the equality constraints, and a dense // Cholesky factorization of order n-p. // // Computes the QR factorization // // A' = [Q1, Q2] * [R; 0] // // and returns a function that (1) computes the Cholesky factorization // // Q_2^T * (H + GG^T * W^{-1} * W^{-T} * GG) * Q2 = L * L^T, // // given H, Df, W, where GG = [Df; G], and (2) returns a function for // solving // // [ H A' GG' ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy ] = [ by ]. // [ GG 0 -W'*W ] [ uz ] [ bz ] // // H is n x n, A is p x n, Df is mnl x n, G is N x n where // N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ). // func kktChol(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) { p, n := A.Size() cdim := mnl + dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := mnl + dims.Sum("l", "q") + dims.SumPacked("s") QA := A.Transpose() tauA := matrix.FloatZeros(p, 1) lapack.Geqrf(QA, tauA) Gs := matrix.FloatZeros(cdim, n) K := matrix.FloatZeros(n, n) bzp := matrix.FloatZeros(cdim_pckd, 1) yy := matrix.FloatZeros(p, 1) checkpnt.AddMatrixVar("tauA", tauA) checkpnt.AddMatrixVar("Gs", Gs) checkpnt.AddMatrixVar("K", K) factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) { // Compute // // K = [Q1, Q2]' * (H + GG' * W^{-1} * W^{-T} * GG) * [Q1, Q2] // // and take the Cholesky factorization of the 2,2 block // // Q_2' * (H + GG^T * W^{-1} * W^{-T} * GG) * Q2. var err error = nil minor := 0 if !checkpnt.MinorEmpty() { minor = checkpnt.MinorTop() } // Gs = W^{-T} * GG in packed storage. if mnl > 0 { Gs.SetSubMatrix(0, 0, Df) } Gs.SetSubMatrix(mnl, 0, G) checkpnt.Check("00factor_chol", minor) scale(Gs, W, true, true) pack2(Gs, dims, mnl) //checkpnt.Check("10factor_chol", minor) // K = [Q1, Q2]' * (H + Gs' * Gs) * [Q1, Q2]. blas.SyrkFloat(Gs, K, 1.0, 0.0, la.OptTrans, &la.IOpt{"k", cdim_pckd}) if H != nil { K.SetSubMatrix(0, 0, matrix.Plus(H, K.GetSubMatrix(0, 0, H.Rows(), H.Cols()))) } //checkpnt.Check("20factor_chol", minor) symm(K, n, 0) lapack.Ormqr(QA, tauA, K, la.OptLeft, la.OptTrans) lapack.Ormqr(QA, tauA, K, la.OptRight) //checkpnt.Check("30factor_chol", minor) // Cholesky factorization of 2,2 block of K. lapack.Potrf(K, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", p * (n + 1)}) checkpnt.Check("40factor_chol", minor) solve := func(x, y, z *matrix.FloatMatrix) (err error) { // Solve // // [ 0 A' GG'*W^{-1} ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy ] = [ by ] // [ W^{-T}*GG 0 -I ] [ W*uz ] [ W^{-T}*bz ] // // and return ux, uy, W*uz. // // On entry, x, y, z contain bx, by, bz. On exit, they contain // the solution ux, uy, W*uz. // // If we change variables ux = Q1*v + Q2*w, the system becomes // // [ K11 K12 R ] [ v ] [Q1'*(bx+GG'*W^{-1}*W^{-T}*bz)] // [ K21 K22 0 ] * [ w ] = [Q2'*(bx+GG'*W^{-1}*W^{-T}*bz)] // [ R^T 0 0 ] [ uy ] [by ] // // W*uz = W^{-T} * ( GG*ux - bz ). minor := 0 if !checkpnt.MinorEmpty() { minor = checkpnt.MinorTop() } // bzp := W^{-T} * bz in packed storage scale(z, W, true, true) pack(z, bzp, dims, &la.IOpt{"mnl", mnl}) // x := [Q1, Q2]' * (x + Gs' * bzp) // = [Q1, Q2]' * (bx + Gs' * W^{-T} * bz) blas.GemvFloat(Gs, bzp, x, 1.0, 1.0, la.OptTrans, &la.IOpt{"m", cdim_pckd}) lapack.Ormqr(QA, tauA, x, la.OptLeft, la.OptTrans) // y := x[:p] // = Q1' * (bx + Gs' * W^{-T} * bz) blas.Copy(y, yy) blas.Copy(x, y, &la.IOpt{"n", p}) // x[:p] := v = R^{-T} * by blas.Copy(yy, x) lapack.Trtrs(QA, x, la.OptUpper, la.OptTrans, &la.IOpt{"n", p}) // x[p:] := K22^{-1} * (x[p:] - K21*x[:p]) // = K22^{-1} * (Q2' * (bx + Gs' * W^{-T} * bz) - K21*v) blas.GemvFloat(K, x, x, -1.0, 1.0, &la.IOpt{"m", n - p}, &la.IOpt{"n", p}, &la.IOpt{"offseta", p}, &la.IOpt{"offsety", p}) lapack.Potrs(K, x, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", p * (n + 1)}, &la.IOpt{"offsetb", p}) // y := y - [K11, K12] * x // = Q1' * (bx + Gs' * W^{-T} * bz) - K11*v - K12*w blas.GemvFloat(K, x, y, -1.0, 1.0, &la.IOpt{"m", p}, &la.IOpt{"n", n}) // y := R^{-1}*y // = R^{-1} * (Q1' * (bx + Gs' * W^{-T} * bz) - K11*v // - K12*w) lapack.Trtrs(QA, y, la.OptUpper, &la.IOpt{"n", p}) // x := [Q1, Q2] * x lapack.Ormqr(QA, tauA, x, la.OptLeft) // bzp := Gs * x - bzp. // = W^{-T} * ( GG*ux - bz ) in packed storage. // Unpack and copy to z. blas.GemvFloat(Gs, x, bzp, 1.0, -1.0, &la.IOpt{"m", cdim_pckd}) unpack(bzp, z, dims, &la.IOpt{"mnl", mnl}) checkpnt.Check("90solve_chol", minor) return nil } return solve, err } return factor, nil }
// Solution of KKT equations with zero 1,1 block, by eliminating the // equality constraints via a QR factorization, and solving the // reduced KKT system by another QR factorization. // // Computes the QR factorization // // A' = [Q1, Q2] * [R1; 0] // // and returns a function that (1) computes the QR factorization // // W^{-T} * G * Q2 = Q3 * R3 // // (with columns of W^{-T}*G in packed storage), and (2) returns a function for solving // // [ 0 A' G' ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy ] = [ by ]. // [ G 0 -W'*W ] [ uz ] [ bz ] // // A is p x n and G is N x n where N = dims['l'] + sum(dims['q']) + // sum( k**2 for k in dims['s'] ). // func kktQr(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) { p, n := A.Size() cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") QA := A.Transpose() tauA := matrix.FloatZeros(p, 1) lapack.Geqrf(QA, tauA) Gs := matrix.FloatZeros(cdim, n) tauG := matrix.FloatZeros(n-p, 1) u := matrix.FloatZeros(cdim_pckd, 1) vv := matrix.FloatZeros(n, 1) w := matrix.FloatZeros(cdim_pckd, 1) checkpnt.AddMatrixVar("tauA", tauA) checkpnt.AddMatrixVar("tauG", tauG) checkpnt.AddMatrixVar("Gs", Gs) checkpnt.AddMatrixVar("qr_u", u) checkpnt.AddMatrixVar("qr_vv", vv) factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) { var err error = nil minor := 0 if !checkpnt.MinorEmpty() { minor = checkpnt.MinorTop() } // Gs = W^{-T}*G, in packed storage. blas.Copy(G, Gs) //checkpnt.Check("00factor_qr", minor) scale(Gs, W, true, true) //checkpnt.Check("01factor_qr", minor) pack2(Gs, dims, 0) //checkpnt.Check("02factor_qr", minor) // Gs := [ Gs1, Gs2 ] // = Gs * [ Q1, Q2 ] lapack.Ormqr(QA, tauA, Gs, la.OptRight, &la.IOpt{"m", cdim_pckd}) //checkpnt.Check("03factor_qr", minor) // QR factorization Gs2 := [ Q3, Q4 ] * [ R3; 0 ] lapack.Geqrf(Gs, tauG, &la.IOpt{"n", n - p}, &la.IOpt{"m", cdim_pckd}, &la.IOpt{"offseta", Gs.Rows() * p}) checkpnt.Check("10factor_qr", minor) solve := func(x, y, z *matrix.FloatMatrix) (err error) { // On entry, x, y, z contain bx, by, bz. On exit, they // contain the solution x, y, W*z of // // [ 0 A' G'*W^{-1} ] [ x ] [bx ] // [ A 0 0 ] * [ y ] = [by ]. // [ W^{-T}*G 0 -I ] [ W*z ] [W^{-T}*bz] // // The system is solved in five steps: // // w := W^{-T}*bz - Gs1*R1^{-T}*by // u := R3^{-T}*Q2'*bx + Q3'*w // W*z := Q3*u - w // y := R1^{-1} * (Q1'*bx - Gs1'*(W*z)) // x := [ Q1, Q2 ] * [ R1^{-T}*by; R3^{-1}*u ] minor := 0 if !checkpnt.MinorEmpty() { minor = checkpnt.MinorTop() } // w := W^{-T} * bz in packed storage scale(z, W, true, true) pack(z, w, dims) //checkpnt.Check("00solve_qr", minor) // vv := [ Q1'*bx; R3^{-T}*Q2'*bx ] blas.Copy(x, vv) lapack.Ormqr(QA, tauA, vv, la.OptTrans) lapack.Trtrs(Gs, vv, la.OptUpper, la.OptTrans, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", Gs.Rows() * p}, &la.IOpt{"offsetb", p}) //checkpnt.Check("10solve_qr", minor) // x[:p] := R1^{-T} * by blas.Copy(y, x) lapack.Trtrs(QA, x, la.OptUpper, la.OptTrans, &la.IOpt{"n", p}) //checkpnt.Check("20solve_qr", minor) // w := w - Gs1 * x[:p] // = W^{-T}*bz - Gs1*by blas.GemvFloat(Gs, x, w, -1.0, 1.0, &la.IOpt{"n", p}, &la.IOpt{"m", cdim_pckd}) //checkpnt.Check("30solve_qr", minor) // u := [ Q3'*w + v[p:]; 0 ] // = [ Q3'*w + R3^{-T}*Q2'*bx; 0 ] blas.Copy(w, u) lapack.Ormqr(Gs, tauG, u, la.OptTrans, &la.IOpt{"k", n - p}, &la.IOpt{"offseta", Gs.Rows() * p}, &la.IOpt{"m", cdim_pckd}) blas.AxpyFloat(vv, u, 1.0, &la.IOpt{"offsetx", p}, &la.IOpt{"n", n - p}) blas.ScalFloat(u, 0.0, &la.IOpt{"offset", n - p}) //checkpnt.Check("40solve_qr", minor) // x[p:] := R3^{-1} * u[:n-p] blas.Copy(u, x, &la.IOpt{"offsety", p}, &la.IOpt{"n", n - p}) lapack.Trtrs(Gs, x, la.OptUpper, &la.IOpt{"n", n - p}, &la.IOpt{"offset", Gs.Rows() * p}, &la.IOpt{"offsetb", p}) //checkpnt.Check("50solve_qr", minor) // x is now [ R1^{-T}*by; R3^{-1}*u[:n-p] ] // x := [Q1 Q2]*x lapack.Ormqr(QA, tauA, x) //checkpnt.Check("60solve_qr", minor) // u := [Q3, Q4] * u - w // = Q3 * u[:n-p] - w lapack.Ormqr(Gs, tauG, u, &la.IOpt{"k", n - p}, &la.IOpt{"m", cdim_pckd}, &la.IOpt{"offseta", Gs.Rows() * p}) blas.AxpyFloat(w, u, -1.0) //checkpnt.Check("70solve_qr", minor) // y := R1^{-1} * ( v[:p] - Gs1'*u ) // = R1^{-1} * ( Q1'*bx - Gs1'*u ) blas.Copy(vv, y, &la.IOpt{"n", p}) blas.GemvFloat(Gs, u, y, -1.0, 1.0, &la.IOpt{"m", cdim_pckd}, &la.IOpt{"n", p}, la.OptTrans) lapack.Trtrs(QA, y, la.OptUpper, &la.IOpt{"n", p}) //checkpnt.Check("80solve_qr", minor) unpack(u, z, dims) checkpnt.Check("90solve_qr", minor) return nil } return solve, err } return factor, nil }