/* * The idea is to remove redundant constants. * $c1->v1 * ($c1->v2 s/$c1/v1)* * set v1 return * The v1->v2 should be eliminated by copy propagation. */ func constprop(c1 *obj.Addr, v1 *obj.Addr, r *gc.Flow) { if gc.Debug['P'] != 0 { fmt.Printf("constprop %v->%v\n", gc.Ctxt.Dconv(c1), gc.Ctxt.Dconv(v1)) } var p *obj.Prog for ; r != nil; r = r.S1 { p = r.Prog if gc.Debug['P'] != 0 { fmt.Printf("%v", p) } if gc.Uniqp(r) == nil { if gc.Debug['P'] != 0 { fmt.Printf("; merge; return\n") } return } if p.As == arm.AMOVW && copyas(&p.From, c1) { if gc.Debug['P'] != 0 { fmt.Printf("; sub%v/%v", gc.Ctxt.Dconv(&p.From), gc.Ctxt.Dconv(v1)) } p.From = *v1 } else if copyu(p, v1, nil) > 1 { if gc.Debug['P'] != 0 { fmt.Printf("; %vset; return\n", gc.Ctxt.Dconv(v1)) } return } if gc.Debug['P'] != 0 { fmt.Printf("\n") } if r.S2 != nil { constprop(c1, v1, r.S2) } } }
// If s==nil, copyu returns the set/use of v in p; otherwise, it // modifies p to replace reads of v with reads of s and returns 0 for // success or non-zero for failure. // // If s==nil, copy returns one of the following values: // 1 if v only used // 2 if v is set and used in one address (read-alter-rewrite; // can't substitute) // 3 if v is only set // 4 if v is set in one address and used in another (so addresses // can be rewritten independently) // 0 otherwise (not touched) func copyu(p *obj.Prog, v *obj.Addr, s *obj.Addr) int { if p.From3Type() != obj.TYPE_NONE { // never generates a from3 fmt.Printf("copyu: from3 (%v) not implemented\n", gc.Ctxt.Dconv(p.From3)) } switch p.As { default: fmt.Printf("copyu: can't find %v\n", obj.Aconv(int(p.As))) return 2 case obj.ANOP, /* read p->from, write p->to */ mips.AMOVV, mips.AMOVF, mips.AMOVD, mips.AMOVH, mips.AMOVHU, mips.AMOVB, mips.AMOVBU, mips.AMOVW, mips.AMOVWU, mips.AMOVFD, mips.AMOVDF, mips.AMOVDW, mips.AMOVWD, mips.AMOVFW, mips.AMOVWF, mips.AMOVDV, mips.AMOVVD, mips.AMOVFV, mips.AMOVVF, mips.ATRUNCFV, mips.ATRUNCDV, mips.ATRUNCFW, mips.ATRUNCDW: if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } // Update only indirect uses of v in p->to if !copyas(&p.To, v) { if copysub(&p.To, v, s, 1) != 0 { return 1 } } return 0 } if copyas(&p.To, v) { // Fix up implicit from if p.From.Type == obj.TYPE_NONE { p.From = p.To } if copyau(&p.From, v) { return 4 } return 3 } if copyau(&p.From, v) { return 1 } if copyau(&p.To, v) { // p->to only indirectly uses v return 1 } return 0 case mips.ASGT, /* read p->from, read p->reg, write p->to */ mips.ASGTU, mips.AADD, mips.AADDU, mips.ASUB, mips.ASUBU, mips.ASLL, mips.ASRL, mips.ASRA, mips.AOR, mips.ANOR, mips.AAND, mips.AXOR, mips.AADDV, mips.AADDVU, mips.ASUBV, mips.ASUBVU, mips.ASLLV, mips.ASRLV, mips.ASRAV, mips.AADDF, mips.AADDD, mips.ASUBF, mips.ASUBD, mips.AMULF, mips.AMULD, mips.ADIVF, mips.ADIVD: if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } if copysub1(p, v, s, 1) != 0 { return 1 } // Update only indirect uses of v in p->to if !copyas(&p.To, v) { if copysub(&p.To, v, s, 1) != 0 { return 1 } } return 0 } if copyas(&p.To, v) { if p.Reg == 0 { // Fix up implicit reg (e.g., ADD // R3,R4 -> ADD R3,R4,R4) so we can // update reg and to separately. p.Reg = p.To.Reg } if copyau(&p.From, v) { return 4 } if copyau1(p, v) { return 4 } return 3 } if copyau(&p.From, v) { return 1 } if copyau1(p, v) { return 1 } if copyau(&p.To, v) { return 1 } return 0 case obj.ACHECKNIL, /* read p->from */ mips.ABEQ, /* read p->from, read p->reg */ mips.ABNE, mips.ABGTZ, mips.ABGEZ, mips.ABLTZ, mips.ABLEZ, mips.ACMPEQD, mips.ACMPEQF, mips.ACMPGED, mips.ACMPGEF, mips.ACMPGTD, mips.ACMPGTF, mips.ABFPF, mips.ABFPT, mips.AMUL, mips.AMULU, mips.ADIV, mips.ADIVU, mips.AMULV, mips.AMULVU, mips.ADIVV, mips.ADIVVU: if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } return copysub1(p, v, s, 1) } if copyau(&p.From, v) { return 1 } if copyau1(p, v) { return 1 } return 0 case mips.AJMP: /* read p->to */ if s != nil { if copysub(&p.To, v, s, 1) != 0 { return 1 } return 0 } if copyau(&p.To, v) { return 1 } return 0 case mips.ARET: /* funny */ if s != nil { return 0 } // All registers die at this point, so claim // everything is set (and not used). return 3 case mips.AJAL: /* funny */ if v.Type == obj.TYPE_REG { // TODO(rsc): REG_R0 and REG_F0 used to be // (when register numbers started at 0) exregoffset and exfregoffset, // which are unset entirely. // It's strange that this handles R0 and F0 differently from the other // registers. Possible failure to optimize? if mips.REG_R0 < v.Reg && v.Reg <= mips.REG_R31 { return 2 } if v.Reg == mips.REGARG { return 2 } if mips.REG_F0 < v.Reg && v.Reg <= mips.REG_F31 { return 2 } } if p.From.Type == obj.TYPE_REG && v.Type == obj.TYPE_REG && p.From.Reg == v.Reg { return 2 } if s != nil { if copysub(&p.To, v, s, 1) != 0 { return 1 } return 0 } if copyau(&p.To, v) { return 4 } return 3 // R0 is zero, used by DUFFZERO, cannot be substituted. // R1 is ptr to memory, used and set, cannot be substituted. case obj.ADUFFZERO: if v.Type == obj.TYPE_REG { if v.Reg == 0 { return 1 } if v.Reg == 1 { return 2 } } return 0 // R1, R2 are ptr to src, dst, used and set, cannot be substituted. // R3 is scratch, set by DUFFCOPY, cannot be substituted. case obj.ADUFFCOPY: if v.Type == obj.TYPE_REG { if v.Reg == 1 || v.Reg == 2 { return 2 } if v.Reg == 3 { return 3 } } return 0 case obj.ATEXT: /* funny */ if v.Type == obj.TYPE_REG { if v.Reg == mips.REGARG { return 3 } } return 0 case obj.APCDATA, obj.AFUNCDATA, obj.AVARDEF, obj.AVARKILL, obj.AVARLIVE, obj.AUSEFIELD: return 0 } }
func peep(firstp *obj.Prog) { g := (*gc.Graph)(gc.Flowstart(firstp, nil)) if g == nil { return } gactive = 0 var p *obj.Prog var r *gc.Flow var t int loop1: if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { gc.Dumpit("loop1", g.Start, 0) } t = 0 for r = g.Start; r != nil; r = r.Link { p = r.Prog // TODO(minux) Handle smaller moves. arm and amd64 // distinguish between moves that *must* sign/zero // extend and moves that don't care so they // can eliminate moves that don't care without // breaking moves that do care. This might let us // simplify or remove the next peep loop, too. if p.As == arm64.AMOVD || p.As == arm64.AFMOVD { if regtyp(&p.To) { // Try to eliminate reg->reg moves if regtyp(&p.From) { if p.From.Type == p.To.Type { if copyprop(r) { excise(r) t++ } else if subprop(r) && copyprop(r) { excise(r) t++ } } } } } } if t != 0 { goto loop1 } /* * look for MOVB x,R; MOVB R,R (for small MOVs not handled above) */ var p1 *obj.Prog var r1 *gc.Flow for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog switch p.As { default: continue case arm64.AMOVH, arm64.AMOVHU, arm64.AMOVB, arm64.AMOVBU, arm64.AMOVW, arm64.AMOVWU: if p.To.Type != obj.TYPE_REG { continue } } r1 = r.Link if r1 == nil { continue } p1 = r1.Prog if p1.As != p.As { continue } if p1.From.Type != obj.TYPE_REG || p1.From.Reg != p.To.Reg { continue } if p1.To.Type != obj.TYPE_REG || p1.To.Reg != p.To.Reg { continue } excise(r1) } if gc.Debug['D'] > 1 { goto ret /* allow following code improvement to be suppressed */ } // MOVD $c, R'; ADD R', R (R' unused) -> ADD $c, R for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog switch p.As { default: continue case arm64.AMOVD: if p.To.Type != obj.TYPE_REG { continue } if p.From.Type != obj.TYPE_CONST { continue } if p.From.Offset < 0 || 4096 <= p.From.Offset { continue } } r1 = r.Link if r1 == nil { continue } p1 = r1.Prog if p1.As != arm64.AADD && p1.As != arm64.ASUB { // TODO(aram): also logical after we have bimm. continue } if p1.From.Type != obj.TYPE_REG || p1.From.Reg != p.To.Reg { continue } if p1.To.Type != obj.TYPE_REG { continue } if gc.Debug['P'] != 0 { fmt.Printf("encoding $%d directly into %v in:\n%v\n%v\n", p.From.Offset, obj.Aconv(int(p1.As)), p, p1) } p1.From.Type = obj.TYPE_CONST p1.From = p.From excise(r) } /* TODO(minux): * look for OP x,y,R; CMP R, $0 -> OP.S x,y,R * when OP can set condition codes correctly */ ret: gc.Flowend(g) }
// If s==nil, copyu returns the set/use of v in p; otherwise, it // modifies p to replace reads of v with reads of s and returns 0 for // success or non-zero for failure. // // If s==nil, copy returns one of the following values: // 1 if v only used // 2 if v is set and used in one address (read-alter-rewrite; // can't substitute) // 3 if v is only set // 4 if v is set in one address and used in another (so addresses // can be rewritten independently) // 0 otherwise (not touched) func copyu(p *obj.Prog, v *obj.Addr, s *obj.Addr) int { if p.From3Type() != obj.TYPE_NONE { // 7g never generates a from3 fmt.Printf("copyu: from3 (%v) not implemented\n", gc.Ctxt.Dconv(p.From3)) } if p.RegTo2 != obj.REG_NONE { // 7g never generates a to2 fmt.Printf("copyu: RegTo2 (%v) not implemented\n", obj.Rconv(int(p.RegTo2))) } switch p.As { default: fmt.Printf("copyu: can't find %v\n", obj.Aconv(int(p.As))) return 2 case obj.ANOP, /* read p->from, write p->to */ arm64.ANEG, arm64.AFNEGD, arm64.AFNEGS, arm64.AFSQRTD, arm64.AFCVTZSD, arm64.AFCVTZSS, arm64.AFCVTZSDW, arm64.AFCVTZSSW, arm64.AFCVTZUD, arm64.AFCVTZUS, arm64.AFCVTZUDW, arm64.AFCVTZUSW, arm64.AFCVTSD, arm64.AFCVTDS, arm64.ASCVTFD, arm64.ASCVTFS, arm64.ASCVTFWD, arm64.ASCVTFWS, arm64.AUCVTFD, arm64.AUCVTFS, arm64.AUCVTFWD, arm64.AUCVTFWS, arm64.AMOVB, arm64.AMOVBU, arm64.AMOVH, arm64.AMOVHU, arm64.AMOVW, arm64.AMOVWU, arm64.AMOVD, arm64.AFMOVS, arm64.AFMOVD: if p.Scond == 0 { if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } // Update only indirect uses of v in p->to if !copyas(&p.To, v) { if copysub(&p.To, v, s, 1) != 0 { return 1 } } return 0 } if copyas(&p.To, v) { // Fix up implicit from if p.From.Type == obj.TYPE_NONE { p.From = p.To } if copyau(&p.From, v) { return 4 } return 3 } if copyau(&p.From, v) { return 1 } if copyau(&p.To, v) { // p->to only indirectly uses v return 1 } return 0 } /* rar p->from, write p->to or read p->from, rar p->to */ if p.From.Type == obj.TYPE_MEM { if copyas(&p.From, v) { // No s!=nil check; need to fail // anyway in that case return 2 } if s != nil { if copysub(&p.To, v, s, 1) != 0 { return 1 } return 0 } if copyas(&p.To, v) { return 3 } } else if p.To.Type == obj.TYPE_MEM { if copyas(&p.To, v) { return 2 } if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } return 0 } if copyau(&p.From, v) { return 1 } } else { fmt.Printf("copyu: bad %v\n", p) } return 0 case arm64.AADD, /* read p->from, read p->reg, write p->to */ arm64.ASUB, arm64.AAND, arm64.AORR, arm64.AEOR, arm64.AMUL, arm64.ASMULL, arm64.AUMULL, arm64.ASMULH, arm64.AUMULH, arm64.ASDIV, arm64.AUDIV, arm64.ALSL, arm64.ALSR, arm64.AASR, arm64.AFADDD, arm64.AFADDS, arm64.AFSUBD, arm64.AFSUBS, arm64.AFMULD, arm64.AFMULS, arm64.AFDIVD, arm64.AFDIVS: if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } if copysub1(p, v, s, 1) != 0 { return 1 } // Update only indirect uses of v in p->to if !copyas(&p.To, v) { if copysub(&p.To, v, s, 1) != 0 { return 1 } } return 0 } if copyas(&p.To, v) { if p.Reg == 0 { // Fix up implicit reg (e.g., ADD // R3,R4 -> ADD R3,R4,R4) so we can // update reg and to separately. p.Reg = p.To.Reg } if copyau(&p.From, v) { return 4 } if copyau1(p, v) { return 4 } return 3 } if copyau(&p.From, v) { return 1 } if copyau1(p, v) { return 1 } if copyau(&p.To, v) { return 1 } return 0 case arm64.ABEQ, arm64.ABNE, arm64.ABGE, arm64.ABLT, arm64.ABGT, arm64.ABLE, arm64.ABLO, arm64.ABLS, arm64.ABHI, arm64.ABHS: return 0 case obj.ACHECKNIL, /* read p->from */ arm64.ACMP, /* read p->from, read p->reg */ arm64.AFCMPD, arm64.AFCMPS: if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } return copysub1(p, v, s, 1) } if copyau(&p.From, v) { return 1 } if copyau1(p, v) { return 1 } return 0 case arm64.AB: /* read p->to */ if s != nil { if copysub(&p.To, v, s, 1) != 0 { return 1 } return 0 } if copyau(&p.To, v) { return 1 } return 0 case obj.ARET: /* funny */ if s != nil { return 0 } // All registers die at this point, so claim // everything is set (and not used). return 3 case arm64.ABL: /* funny */ if p.From.Type == obj.TYPE_REG && v.Type == obj.TYPE_REG && p.From.Reg == v.Reg { return 2 } if s != nil { if copysub(&p.To, v, s, 1) != 0 { return 1 } return 0 } if copyau(&p.To, v) { return 4 } return 3 // R31 is zero, used by DUFFZERO, cannot be substituted. // R16 is ptr to memory, used and set, cannot be substituted. case obj.ADUFFZERO: if v.Type == obj.TYPE_REG { if v.Reg == 31 { return 1 } if v.Reg == 16 { return 2 } } return 0 // R16, R17 are ptr to src, dst, used and set, cannot be substituted. // R27 is scratch, set by DUFFCOPY, cannot be substituted. case obj.ADUFFCOPY: if v.Type == obj.TYPE_REG { if v.Reg == 16 || v.Reg == 17 { return 2 } if v.Reg == 27 { return 3 } } return 0 case arm64.AHINT, obj.ATEXT, obj.APCDATA, obj.AFUNCDATA, obj.AVARDEF, obj.AVARKILL, obj.AVARLIVE, obj.AUSEFIELD: return 0 } }
func progedit(ctxt *obj.Link, p *obj.Prog) { // Maintain information about code generation mode. if ctxt.Mode == 0 { ctxt.Mode = ctxt.Arch.Regsize * 8 } p.Mode = int8(ctxt.Mode) switch p.As { case AMODE: if p.From.Type == obj.TYPE_CONST || (p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_NONE) { switch int(p.From.Offset) { case 16, 32, 64: ctxt.Mode = int(p.From.Offset) } } obj.Nopout(p) } // Thread-local storage references use the TLS pseudo-register. // As a register, TLS refers to the thread-local storage base, and it // can only be loaded into another register: // // MOVQ TLS, AX // // An offset from the thread-local storage base is written off(reg)(TLS*1). // Semantically it is off(reg), but the (TLS*1) annotation marks this as // indexing from the loaded TLS base. This emits a relocation so that // if the linker needs to adjust the offset, it can. For example: // // MOVQ TLS, AX // MOVQ 0(AX)(TLS*1), CX // load g into CX // // On systems that support direct access to the TLS memory, this // pair of instructions can be reduced to a direct TLS memory reference: // // MOVQ 0(TLS), CX // load g into CX // // The 2-instruction and 1-instruction forms correspond to the two code // sequences for loading a TLS variable in the local exec model given in "ELF // Handling For Thread-Local Storage". // // We apply this rewrite on systems that support the 1-instruction form. // The decision is made using only the operating system and the -shared flag, // not the link mode. If some link modes on a particular operating system // require the 2-instruction form, then all builds for that operating system // will use the 2-instruction form, so that the link mode decision can be // delayed to link time. // // In this way, all supported systems use identical instructions to // access TLS, and they are rewritten appropriately first here in // liblink and then finally using relocations in the linker. // // When -shared is passed, we leave the code in the 2-instruction form but // assemble (and relocate) them in different ways to generate the initial // exec code sequence. It's a bit of a fluke that this is possible without // rewriting the instructions more comprehensively, and it only does because // we only support a single TLS variable (g). if canuse1insntls(ctxt) { // Reduce 2-instruction sequence to 1-instruction sequence. // Sequences like // MOVQ TLS, BX // ... off(BX)(TLS*1) ... // become // NOP // ... off(TLS) ... // // TODO(rsc): Remove the Hsolaris special case. It exists only to // guarantee we are producing byte-identical binaries as before this code. // But it should be unnecessary. if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_REG && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 && ctxt.Headtype != obj.Hsolaris { obj.Nopout(p) } if p.From.Type == obj.TYPE_MEM && p.From.Index == REG_TLS && REG_AX <= p.From.Reg && p.From.Reg <= REG_R15 { p.From.Reg = REG_TLS p.From.Scale = 0 p.From.Index = REG_NONE } if p.To.Type == obj.TYPE_MEM && p.To.Index == REG_TLS && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 { p.To.Reg = REG_TLS p.To.Scale = 0 p.To.Index = REG_NONE } } else { // load_g_cx, below, always inserts the 1-instruction sequence. Rewrite it // as the 2-instruction sequence if necessary. // MOVQ 0(TLS), BX // becomes // MOVQ TLS, BX // MOVQ 0(BX)(TLS*1), BX if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 { q := obj.Appendp(ctxt, p) q.As = p.As q.From = p.From q.From.Type = obj.TYPE_MEM q.From.Reg = p.To.Reg q.From.Index = REG_TLS q.From.Scale = 2 // TODO: use 1 q.To = p.To p.From.Type = obj.TYPE_REG p.From.Reg = REG_TLS p.From.Index = REG_NONE p.From.Offset = 0 } } // TODO: Remove. if ctxt.Headtype == obj.Hwindows && p.Mode == 64 || ctxt.Headtype == obj.Hplan9 { if p.From.Scale == 1 && p.From.Index == REG_TLS { p.From.Scale = 2 } if p.To.Scale == 1 && p.To.Index == REG_TLS { p.To.Scale = 2 } } // Rewrite 0 to $0 in 3rd argment to CMPPS etc. // That's what the tables expect. switch p.As { case ACMPPD, ACMPPS, ACMPSD, ACMPSS: if p.To.Type == obj.TYPE_MEM && p.To.Name == obj.NAME_NONE && p.To.Reg == REG_NONE && p.To.Index == REG_NONE && p.To.Sym == nil { p.To.Type = obj.TYPE_CONST } } // Rewrite CALL/JMP/RET to symbol as TYPE_BRANCH. switch p.As { case obj.ACALL, obj.AJMP, obj.ARET: if p.To.Type == obj.TYPE_MEM && (p.To.Name == obj.NAME_EXTERN || p.To.Name == obj.NAME_STATIC) && p.To.Sym != nil { p.To.Type = obj.TYPE_BRANCH } } // Rewrite MOVL/MOVQ $XXX(FP/SP) as LEAL/LEAQ. if p.From.Type == obj.TYPE_ADDR && (ctxt.Arch.Thechar == '6' || p.From.Name != obj.NAME_EXTERN && p.From.Name != obj.NAME_STATIC) { switch p.As { case AMOVL: p.As = ALEAL p.From.Type = obj.TYPE_MEM case AMOVQ: p.As = ALEAQ p.From.Type = obj.TYPE_MEM } } if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { if p.From3 != nil { nacladdr(ctxt, p, p.From3) } nacladdr(ctxt, p, &p.From) nacladdr(ctxt, p, &p.To) } // Rewrite float constants to values stored in memory. switch p.As { // Convert AMOVSS $(0), Xx to AXORPS Xx, Xx case AMOVSS: if p.From.Type == obj.TYPE_FCONST { if p.From.Val.(float64) == 0 { if p.To.Type == obj.TYPE_REG && REG_X0 <= p.To.Reg && p.To.Reg <= REG_X15 { p.As = AXORPS p.From = p.To break } } } fallthrough case AFMOVF, AFADDF, AFSUBF, AFSUBRF, AFMULF, AFDIVF, AFDIVRF, AFCOMF, AFCOMFP, AADDSS, ASUBSS, AMULSS, ADIVSS, ACOMISS, AUCOMISS: if p.From.Type == obj.TYPE_FCONST { f32 := float32(p.From.Val.(float64)) i32 := math.Float32bits(f32) literal := fmt.Sprintf("$f32.%08x", i32) s := obj.Linklookup(ctxt, literal, 0) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = s p.From.Sym.Local = true p.From.Offset = 0 } case AMOVSD: // Convert AMOVSD $(0), Xx to AXORPS Xx, Xx if p.From.Type == obj.TYPE_FCONST { if p.From.Val.(float64) == 0 { if p.To.Type == obj.TYPE_REG && REG_X0 <= p.To.Reg && p.To.Reg <= REG_X15 { p.As = AXORPS p.From = p.To break } } } fallthrough case AFMOVD, AFADDD, AFSUBD, AFSUBRD, AFMULD, AFDIVD, AFDIVRD, AFCOMD, AFCOMDP, AADDSD, ASUBSD, AMULSD, ADIVSD, ACOMISD, AUCOMISD: if p.From.Type == obj.TYPE_FCONST { i64 := math.Float64bits(p.From.Val.(float64)) literal := fmt.Sprintf("$f64.%016x", i64) s := obj.Linklookup(ctxt, literal, 0) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = s p.From.Sym.Local = true p.From.Offset = 0 } } if ctxt.Flag_dynlink { rewriteToUseGot(ctxt, p) } if ctxt.Flag_shared != 0 && p.Mode == 32 { rewriteToPcrel(ctxt, p) } }
func peep(firstp *obj.Prog) { g := (*gc.Graph)(gc.Flowstart(firstp, nil)) if g == nil { return } gactive = 0 // byte, word arithmetic elimination. elimshortmov(g) // constant propagation // find MOV $con,R followed by // another MOV $con,R without // setting R in the interim var p *obj.Prog for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog switch p.As { case x86.ALEAL, x86.ALEAQ: if regtyp(&p.To) { if p.From.Sym != nil { if p.From.Index == x86.REG_NONE { conprop(r) } } } case x86.AMOVB, x86.AMOVW, x86.AMOVL, x86.AMOVQ, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if p.From.Type == obj.TYPE_CONST || p.From.Type == obj.TYPE_FCONST { conprop(r) } } } } var r *gc.Flow var r1 *gc.Flow var p1 *obj.Prog var t int loop1: if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { gc.Dumpit("loop1", g.Start, 0) } t = 0 for r = g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case x86.AMOVL, x86.AMOVQ, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if regtyp(&p.From) { if copyprop(g, r) { excise(r) t++ } else if subprop(r) && copyprop(g, r) { excise(r) t++ } } } case x86.AMOVBLZX, x86.AMOVWLZX, x86.AMOVBLSX, x86.AMOVWLSX: if regtyp(&p.To) { r1 = rnops(gc.Uniqs(r)) if r1 != nil { p1 = r1.Prog if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg { p1.As = x86.AMOVL t++ } } } case x86.AMOVBQSX, x86.AMOVBQZX, x86.AMOVWQSX, x86.AMOVWQZX, x86.AMOVLQSX, x86.AMOVLQZX, x86.AMOVQL: if regtyp(&p.To) { r1 = rnops(gc.Uniqs(r)) if r1 != nil { p1 = r1.Prog if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg { p1.As = x86.AMOVQ t++ } } } case x86.AADDL, x86.AADDQ, x86.AADDW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.AADDQ { p.As = x86.ADECQ } else if p.As == x86.AADDL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.AADDQ { p.As = x86.AINCQ } else if p.As == x86.AADDL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } case x86.ASUBL, x86.ASUBQ, x86.ASUBW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.ASUBQ { p.As = x86.AINCQ } else if p.As == x86.ASUBL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.ASUBQ { p.As = x86.ADECQ } else if p.As == x86.ASUBL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } } } if t != 0 { goto loop1 } // MOVLQZX removal. // The MOVLQZX exists to avoid being confused for a // MOVL that is just copying 32-bit data around during // copyprop. Now that copyprop is done, remov MOVLQZX R1, R2 // if it is dominated by an earlier ADDL/MOVL/etc into R1 that // will have already cleared the high bits. // // MOVSD removal. // We never use packed registers, so a MOVSD between registers // can be replaced by MOVAPD, which moves the pair of float64s // instead of just the lower one. We only use the lower one, but // the processor can do better if we do moves using both. for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog if p.As == x86.AMOVLQZX { if regtyp(&p.From) { if p.From.Type == p.To.Type && p.From.Reg == p.To.Reg { if prevl(r, int(p.From.Reg)) { excise(r) } } } } if p.As == x86.AMOVSD { if regtyp(&p.From) { if regtyp(&p.To) { p.As = x86.AMOVAPD } } } } // load pipelining // push any load from memory as early as possible // to give it time to complete before use. for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog switch p.As { case x86.AMOVB, x86.AMOVW, x86.AMOVL, x86.AMOVQ, x86.AMOVLQZX: if regtyp(&p.To) && !regconsttyp(&p.From) { pushback(r) } } } gc.Flowend(g) }
func peep(firstp *obj.Prog) { g := gc.Flowstart(firstp, nil) if g == nil { return } gactive = 0 // byte, word arithmetic elimination. elimshortmov(g) // constant propagation // find MOV $con,R followed by // another MOV $con,R without // setting R in the interim var p *obj.Prog for r := g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case x86.ALEAL: if regtyp(&p.To) { if p.From.Sym != nil { if p.From.Index == x86.REG_NONE { conprop(r) } } } case x86.AMOVB, x86.AMOVW, x86.AMOVL, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if p.From.Type == obj.TYPE_CONST || p.From.Type == obj.TYPE_FCONST { conprop(r) } } } } var r1 *gc.Flow var p1 *obj.Prog var r *gc.Flow var t int loop1: if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { gc.Dumpit("loop1", g.Start, 0) } t = 0 for r = g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case x86.AMOVL, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if regtyp(&p.From) { if copyprop(g, r) { excise(r) t++ } else if subprop(r) && copyprop(g, r) { excise(r) t++ } } } case x86.AMOVBLZX, x86.AMOVWLZX, x86.AMOVBLSX, x86.AMOVWLSX: if regtyp(&p.To) { r1 = rnops(gc.Uniqs(r)) if r1 != nil { p1 = r1.Prog if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg { p1.As = x86.AMOVL t++ } } } case x86.AADDL, x86.AADDW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.AADDL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.AADDL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } case x86.ASUBL, x86.ASUBW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.ASUBL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.ASUBL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } } } if t != 0 { goto loop1 } // MOVSD removal. // We never use packed registers, so a MOVSD between registers // can be replaced by MOVAPD, which moves the pair of float64s // instead of just the lower one. We only use the lower one, but // the processor can do better if we do moves using both. for r := g.Start; r != nil; r = r.Link { p = r.Prog if p.As == x86.AMOVSD { if regtyp(&p.From) { if regtyp(&p.To) { p.As = x86.AMOVAPD } } } } gc.Flowend(g) }
// If s==nil, copyu returns the set/use of v in p; otherwise, it // modifies p to replace reads of v with reads of s and returns 0 for // success or non-zero for failure. // // If s==nil, copy returns one of the following values: // 1 if v only used // 2 if v is set and used in one address (read-alter-rewrite; // can't substitute) // 3 if v is only set // 4 if v is set in one address and used in another (so addresses // can be rewritten independently) // 0 otherwise (not touched) func copyu(p *obj.Prog, v *obj.Addr, s *obj.Addr) int { if p.From3Type() != obj.TYPE_NONE { // 9g never generates a from3 fmt.Printf("copyu: from3 (%v) not implemented\n", gc.Ctxt.Dconv(p.From3)) } switch p.As { default: fmt.Printf("copyu: can't find %v\n", obj.Aconv(int(p.As))) return 2 case obj.ANOP, /* read p->from, write p->to */ ppc64.AMOVH, ppc64.AMOVHZ, ppc64.AMOVB, ppc64.AMOVBZ, ppc64.AMOVW, ppc64.AMOVWZ, ppc64.AMOVD, ppc64.ANEG, ppc64.ANEGCC, ppc64.AADDME, ppc64.AADDMECC, ppc64.AADDZE, ppc64.AADDZECC, ppc64.ASUBME, ppc64.ASUBMECC, ppc64.ASUBZE, ppc64.ASUBZECC, ppc64.AFCTIW, ppc64.AFCTIWZ, ppc64.AFCTID, ppc64.AFCTIDZ, ppc64.AFCFID, ppc64.AFCFIDCC, ppc64.AFMOVS, ppc64.AFMOVD, ppc64.AFRSP, ppc64.AFNEG, ppc64.AFNEGCC: if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } // Update only indirect uses of v in p->to if !copyas(&p.To, v) { if copysub(&p.To, v, s, 1) != 0 { return 1 } } return 0 } if copyas(&p.To, v) { // Fix up implicit from if p.From.Type == obj.TYPE_NONE { p.From = p.To } if copyau(&p.From, v) { return 4 } return 3 } if copyau(&p.From, v) { return 1 } if copyau(&p.To, v) { // p->to only indirectly uses v return 1 } return 0 case ppc64.AMOVBU, /* rar p->from, write p->to or read p->from, rar p->to */ ppc64.AMOVBZU, ppc64.AMOVHU, ppc64.AMOVHZU, ppc64.AMOVWZU, ppc64.AMOVDU: if p.From.Type == obj.TYPE_MEM { if copyas(&p.From, v) { // No s!=nil check; need to fail // anyway in that case return 2 } if s != nil { if copysub(&p.To, v, s, 1) != 0 { return 1 } return 0 } if copyas(&p.To, v) { return 3 } } else if p.To.Type == obj.TYPE_MEM { if copyas(&p.To, v) { return 2 } if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } return 0 } if copyau(&p.From, v) { return 1 } } else { fmt.Printf("copyu: bad %v\n", p) } return 0 case ppc64.ARLWMI, /* read p->from, read p->reg, rar p->to */ ppc64.ARLWMICC: if copyas(&p.To, v) { return 2 } fallthrough /* fall through */ case ppc64.AADD, /* read p->from, read p->reg, write p->to */ ppc64.AADDC, ppc64.AADDE, ppc64.ASUB, ppc64.ASLW, ppc64.ASRW, ppc64.ASRAW, ppc64.ASLD, ppc64.ASRD, ppc64.ASRAD, ppc64.AOR, ppc64.AORCC, ppc64.AORN, ppc64.AORNCC, ppc64.AAND, ppc64.AANDCC, ppc64.AANDN, ppc64.AANDNCC, ppc64.ANAND, ppc64.ANANDCC, ppc64.ANOR, ppc64.ANORCC, ppc64.AXOR, ppc64.AMULHW, ppc64.AMULHWU, ppc64.AMULLW, ppc64.AMULLD, ppc64.ADIVW, ppc64.ADIVD, ppc64.ADIVWU, ppc64.ADIVDU, ppc64.AREM, ppc64.AREMU, ppc64.AREMD, ppc64.AREMDU, ppc64.ARLWNM, ppc64.ARLWNMCC, ppc64.AFADDS, ppc64.AFADD, ppc64.AFSUBS, ppc64.AFSUB, ppc64.AFMULS, ppc64.AFMUL, ppc64.AFDIVS, ppc64.AFDIV: if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } if copysub1(p, v, s, 1) != 0 { return 1 } // Update only indirect uses of v in p->to if !copyas(&p.To, v) { if copysub(&p.To, v, s, 1) != 0 { return 1 } } return 0 } if copyas(&p.To, v) { if p.Reg == 0 { // Fix up implicit reg (e.g., ADD // R3,R4 -> ADD R3,R4,R4) so we can // update reg and to separately. p.Reg = p.To.Reg } if copyau(&p.From, v) { return 4 } if copyau1(p, v) { return 4 } return 3 } if copyau(&p.From, v) { return 1 } if copyau1(p, v) { return 1 } if copyau(&p.To, v) { return 1 } return 0 case ppc64.ABEQ, ppc64.ABGT, ppc64.ABGE, ppc64.ABLT, ppc64.ABLE, ppc64.ABNE, ppc64.ABVC, ppc64.ABVS: return 0 case obj.ACHECKNIL, /* read p->from */ ppc64.ACMP, /* read p->from, read p->to */ ppc64.ACMPU, ppc64.ACMPW, ppc64.ACMPWU, ppc64.AFCMPO, ppc64.AFCMPU: if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } return copysub(&p.To, v, s, 1) } if copyau(&p.From, v) { return 1 } if copyau(&p.To, v) { return 1 } return 0 // 9g never generates a branch to a GPR (this isn't // even a normal instruction; liblink turns it in to a // mov and a branch). case ppc64.ABR: /* read p->to */ if s != nil { if copysub(&p.To, v, s, 1) != 0 { return 1 } return 0 } if copyau(&p.To, v) { return 1 } return 0 case obj.ARET: /* funny */ if s != nil { return 0 } // All registers die at this point, so claim // everything is set (and not used). return 3 case ppc64.ABL: /* funny */ if v.Type == obj.TYPE_REG { // TODO(rsc): REG_R0 and REG_F0 used to be // (when register numbers started at 0) exregoffset and exfregoffset, // which are unset entirely. // It's strange that this handles R0 and F0 differently from the other // registers. Possible failure to optimize? if ppc64.REG_R0 < v.Reg && v.Reg <= ppc64.REGEXT { return 2 } if v.Reg == ppc64.REGARG { return 2 } if ppc64.REG_F0 < v.Reg && v.Reg <= ppc64.FREGEXT { return 2 } } if p.From.Type == obj.TYPE_REG && v.Type == obj.TYPE_REG && p.From.Reg == v.Reg { return 2 } if s != nil { if copysub(&p.To, v, s, 1) != 0 { return 1 } return 0 } if copyau(&p.To, v) { return 4 } return 3 // R0 is zero, used by DUFFZERO, cannot be substituted. // R3 is ptr to memory, used and set, cannot be substituted. case obj.ADUFFZERO: if v.Type == obj.TYPE_REG { if v.Reg == 0 { return 1 } if v.Reg == 3 { return 2 } } return 0 // R3, R4 are ptr to src, dst, used and set, cannot be substituted. // R5 is scratch, set by DUFFCOPY, cannot be substituted. case obj.ADUFFCOPY: if v.Type == obj.TYPE_REG { if v.Reg == 3 || v.Reg == 4 { return 2 } if v.Reg == 5 { return 3 } } return 0 case obj.ATEXT: /* funny */ if v.Type == obj.TYPE_REG { if v.Reg == ppc64.REGARG { return 3 } } return 0 case obj.APCDATA, obj.AFUNCDATA, obj.AVARDEF, obj.AVARKILL, obj.AVARLIVE, obj.AUSEFIELD: return 0 } }