Пример #1
0
func (p *exporter) signature(sig *types.Signature) {
	// We need the receiver information (T vs *T)
	// for methods associated with named types.
	// We do not record interface receiver types in the
	// export data because 1) the importer can derive them
	// from the interface type and 2) they create cycles
	// in the type graph.
	if recv := sig.Recv(); recv != nil {
		if _, ok := recv.Type().Underlying().(*types.Interface); !ok {
			// 1-element tuple
			p.int(1)
			p.param(recv)
		} else {
			// 0-element tuple
			p.int(0)
		}
	} else {
		// 0-element tuple
		p.int(0)
	}
	p.tuple(sig.Params())
	p.tuple(sig.Results())
	if sig.Variadic() {
		p.int(1)
	} else {
		p.int(0)
	}
}
Пример #2
0
func (tm *LLVMTypeMap) funcLLVMType(tstr string, f *types.Signature) llvm.Type {
	typ, ok := tm.types[tstr]
	if !ok {
		// If there's a receiver change the receiver to an
		// additional (first) parameter, and take the value of
		// the resulting signature instead.
		var param_types []llvm.Type
		if recv := f.Recv(); recv != nil {
			params := f.Params()
			paramvars := make([]*types.Var, int(params.Len()+1))
			paramvars[0] = recv
			for i := 0; i < int(params.Len()); i++ {
				paramvars[i+1] = params.At(i)
			}
			params = types.NewTuple(paramvars...)
			f := types.NewSignature(nil, params, f.Results(), f.IsVariadic())
			return tm.ToLLVM(f)
		}

		typ = llvm.GlobalContext().StructCreateNamed("")
		tm.types[tstr] = typ

		params := f.Params()
		nparams := int(params.Len())
		for i := 0; i < nparams; i++ {
			typ := params.At(i).Type()
			if f.IsVariadic() && i == nparams-1 {
				typ = types.NewSlice(typ)
			}
			llvmtyp := tm.ToLLVM(typ)
			param_types = append(param_types, llvmtyp)
		}

		var return_type llvm.Type
		results := f.Results()
		switch nresults := int(results.Len()); nresults {
		case 0:
			return_type = llvm.VoidType()
		case 1:
			return_type = tm.ToLLVM(results.At(0).Type())
		default:
			elements := make([]llvm.Type, nresults)
			for i := range elements {
				result := results.At(i)
				elements[i] = tm.ToLLVM(result.Type())
			}
			return_type = llvm.StructType(elements, false)
		}

		fntyp := llvm.FunctionType(return_type, param_types, false)
		fnptrtyp := llvm.PointerType(fntyp, 0)
		i8ptr := llvm.PointerType(llvm.Int8Type(), 0)
		elements := []llvm.Type{fnptrtyp, i8ptr} // func, closure
		typ.StructSetBody(elements, false)
	}
	return typ
}
Пример #3
0
// changeRecv returns sig with Recv prepended to Params().
func changeRecv(sig *types.Signature) *types.Signature {
	params := sig.Params()
	n := params.Len()
	p2 := make([]*types.Var, n+1)
	p2[0] = sig.Recv()
	for i := 0; i < n; i++ {
		p2[i+1] = params.At(i)
	}
	return types.NewSignature(nil, nil, types.NewTuple(p2...), sig.Results(), sig.IsVariadic())
}
Пример #4
0
func (c *compiler) makeFunc(ident *ast.Ident, ftyp *types.Signature) *LLVMValue {
	fname := ident.String()
	if ftyp.Recv() == nil && fname == "init" {
		// Make "init" functions anonymous.
		fname = ""
	} else {
		var pkgname string
		if recv := ftyp.Recv(); recv != nil {
			var recvname string
			switch recvtyp := recv.Type().(type) {
			case *types.Pointer:
				if named, ok := recvtyp.Elem().(*types.Named); ok {
					obj := named.Obj()
					recvname = "*" + obj.Name()
					pkgname = obj.Pkg().Path()
				}
			case *types.Named:
				named := recvtyp
				obj := named.Obj()
				recvname = obj.Name()
				pkgname = obj.Pkg().Path()
			}

			if recvname != "" {
				fname = fmt.Sprintf("%s.%s", recvname, fname)
			} else {
				// If the receiver is an unnamed struct, we're
				// synthesising a method for an unnamed struct
				// type. There's no meaningful name to give the
				// function, so leave it up to LLVM.
				fname = ""
			}
		} else {
			obj := c.typeinfo.Objects[ident]
			pkgname = obj.Pkg().Path()
		}
		if fname != "" {
			fname = pkgname + "." + fname
		}
	}

	// gcimporter may produce multiple AST objects for the same function.
	llvmftyp := c.types.ToLLVM(ftyp)
	var fn llvm.Value
	if fname != "" {
		fn = c.module.Module.NamedFunction(fname)
	}
	if fn.IsNil() {
		llvmfptrtyp := llvmftyp.StructElementTypes()[0].ElementType()
		fn = llvm.AddFunction(c.module.Module, fname, llvmfptrtyp)
	}
	fn = llvm.ConstInsertValue(llvm.ConstNull(llvmftyp), fn, []uint32{0})
	return c.NewValue(fn, ftyp)
}
Пример #5
0
func (tm *llvmTypeMap) funcLLVMType(f *types.Signature, name string) llvm.Type {
	// If there's a receiver change the receiver to an
	// additional (first) parameter, and take the value of
	// the resulting signature instead.
	if recv := f.Recv(); recv != nil {
		params := f.Params()
		paramvars := make([]*types.Var, int(params.Len()+1))
		paramvars[0] = recv
		for i := 0; i < int(params.Len()); i++ {
			paramvars[i+1] = params.At(i)
		}
		params = types.NewTuple(paramvars...)
		f := types.NewSignature(nil, nil, params, f.Results(), f.Variadic())
		return tm.toLLVM(f, name)
	}

	if typ, ok := tm.types.At(f).(llvm.Type); ok {
		return typ
	}
	typ := llvm.GlobalContext().StructCreateNamed(name)
	tm.types.Set(f, typ)

	params := f.Params()
	param_types := make([]llvm.Type, params.Len())
	for i := range param_types {
		llvmtyp := tm.ToLLVM(params.At(i).Type())
		param_types[i] = llvmtyp
	}

	var return_type llvm.Type
	results := f.Results()
	switch nresults := int(results.Len()); nresults {
	case 0:
		return_type = llvm.VoidType()
	case 1:
		return_type = tm.ToLLVM(results.At(0).Type())
	default:
		elements := make([]llvm.Type, nresults)
		for i := range elements {
			result := results.At(i)
			elements[i] = tm.ToLLVM(result.Type())
		}
		return_type = llvm.StructType(elements, false)
	}

	fntyp := llvm.FunctionType(return_type, param_types, false)
	fnptrtyp := llvm.PointerType(fntyp, 0)
	i8ptr := llvm.PointerType(llvm.Int8Type(), 0)
	elements := []llvm.Type{fnptrtyp, i8ptr} // func, closure
	typ.StructSetBody(elements, false)
	return typ
}
Пример #6
0
// writeSignature writes to buf the signature sig in declaration syntax.
func writeSignature(buf *bytes.Buffer, pkg *types.Package, name string, sig *types.Signature, params []*Parameter) {
	buf.WriteString("func ")
	if recv := sig.Recv(); recv != nil {
		buf.WriteString("(")
		if n := params[0].Name(); n != "" {
			buf.WriteString(n)
			buf.WriteString(" ")
		}
		buf.WriteString(relType(params[0].Type(), pkg))
		buf.WriteString(") ")
	}
	buf.WriteString(name)
	types.WriteSignature(buf, pkg, sig)
}
Пример #7
0
func (cdd *CDD) signature(sig *types.Signature, recv bool, pnames int) (res results, params string) {
	params = "("
	res = cdd.results(sig.Results())
	if r := sig.Recv(); r != nil && recv {
		typ, dim, acds := cdd.TypeStr(r.Type())
		res.acds = append(res.acds, acds...)
		var pname string
		switch pnames {
		case numNames:
			pname = "_0"
		case orgNames:
			pname = cdd.NameStr(r, true)
		}
		if pname == "" {
			params += typ + dimFuncPtr("", dim)
		} else {
			params += typ + " " + dimFuncPtr(pname, dim)
		}
		if sig.Params() != nil {
			params += ", "
		}
	}
	if p := sig.Params(); p != nil {
		for i, n := 0, p.Len(); i < n; i++ {
			if i != 0 {
				params += ", "
			}
			v := p.At(i)
			typ, dim, acds := cdd.TypeStr(v.Type())
			res.acds = append(res.acds, acds...)
			var pname string
			switch pnames {
			case numNames:
				pname = "_" + strconv.Itoa(i+1)
			case orgNames:
				pname = cdd.NameStr(v, true)
				if pname == "_$" {
					pname = "unused" + cdd.gtc.uniqueId()
				}
			}
			if pname == "" {
				params += typ + dimFuncPtr("", dim)
			} else {
				params += typ + " " + dimFuncPtr(pname, dim)
			}
		}
	}
	params += ")"
	return
}
Пример #8
0
func (m *TypeMap) descriptorSignature(t *types.Signature, name string) TypeDebugDescriptor {
	// If there's a receiver change the receiver to an
	// additional (first) parameter, and take the value of
	// the resulting signature instead.
	if recv := t.Recv(); recv != nil {
		params := t.Params()
		paramvars := make([]*types.Var, int(params.Len()+1))
		paramvars[0] = recv
		for i := 0; i < int(params.Len()); i++ {
			paramvars[i+1] = params.At(i)
		}
		params = types.NewTuple(paramvars...)
		t := types.NewSignature(nil, nil, params, t.Results(), t.Variadic())
		return m.typeDebugDescriptor(t, name)
	}
	if dt, ok := m.m.At(t).(TypeDebugDescriptor); ok {
		return dt
	}

	var returnType DebugDescriptor
	var paramTypes []DebugDescriptor
	if results := t.Results(); results.Len() == 1 {
		returnType = m.TypeDebugDescriptor(results.At(0).Type())
	} else if results != nil {
		fields := make([]DebugDescriptor, results.Len())
		for i := range fields {
			fields[i] = m.TypeDebugDescriptor(results.At(i).Type())
		}
		returnType = NewStructCompositeType(fields)
	}
	if params := t.Params(); params != nil && params.Len() > 0 {
		paramTypes = make([]DebugDescriptor, params.Len())
		for i := range paramTypes {
			paramTypes[i] = m.TypeDebugDescriptor(params.At(i).Type())
		}
	}
	ct := NewStructCompositeType([]DebugDescriptor{
		NewSubroutineCompositeType(returnType, paramTypes),
		m.TypeDebugDescriptor(types.NewPointer(types.Typ[types.Uint8])),
	})
	ct.Name = name
	m.m.Set(t, ct)
	return ct
}
Пример #9
0
func (v funcTypeVisitor) Visit(node ast.Node) ast.Visitor {
	var sig *types.Signature
	var noderecv *ast.FieldList
	var astfunc *ast.FuncType

	switch node := node.(type) {
	case *ast.FuncDecl:
		sig = v.objects[node.Name].Type().(*types.Signature)
		astfunc = node.Type
		noderecv = node.Recv
	case *ast.FuncLit:
		sig = v.exprtypes[node].Type.(*types.Signature)
		astfunc = node.Type
	default:
		return v
	}

	// go/types creates a separate types.Var for
	// internal and external usage. We need to
	// associate them at the object data level.
	paramIdents := fieldlistIdents(astfunc.Params)
	resultIdents := fieldlistIdents(astfunc.Results)
	if recv := sig.Recv(); recv != nil {
		id := fieldlistIdents(noderecv)[0]
		if obj, ok := v.objects[id]; ok {
			v.objectdata[recv] = v.objectdata[obj]
		}
	}
	for i, id := range paramIdents {
		if obj, ok := v.objects[id]; ok {
			v.objectdata[sig.Params().At(i)] = v.objectdata[obj]
		}
	}
	for i, id := range resultIdents {
		if obj, ok := v.objects[id]; ok {
			v.objectdata[sig.Results().At(i)] = v.objectdata[obj]
		}
	}
	return v
}
Пример #10
0
func (ts *TypeStringer) writeSignature(buf *bytes.Buffer, sig *types.Signature) {
	if recv := sig.Recv(); recv != nil {
		ts.writeType(buf, recv.Type())
		buf.WriteByte(' ')
	}

	ts.writeParams(buf, sig.Params(), sig.IsVariadic())
	if sig.Results().Len() == 0 {
		// no result
		return
	}

	buf.WriteByte(' ')
	if sig.Results().Len() == 1 {
		// single unnamed result
		ts.writeType(buf, sig.Results().At(0).Type())
		return
	}

	// multiple or named result(s)
	ts.writeParams(buf, sig.Results(), false)
}
Пример #11
0
// writeSignature writes to w the signature sig in declaration syntax.
// Derived from types.Signature.String().
//
func writeSignature(w io.Writer, name string, sig *types.Signature, params []*Parameter) {
	io.WriteString(w, "func ")
	if recv := sig.Recv(); recv != nil {
		io.WriteString(w, "(")
		if n := params[0].Name(); n != "" {
			io.WriteString(w, n)
			io.WriteString(w, " ")
		}
		io.WriteString(w, params[0].Type().String())
		io.WriteString(w, ") ")
		params = params[1:]
	}
	io.WriteString(w, name)
	io.WriteString(w, "(")
	for i, v := range params {
		if i > 0 {
			io.WriteString(w, ", ")
		}
		io.WriteString(w, v.Name())
		io.WriteString(w, " ")
		if sig.IsVariadic() && i == len(params)-1 {
			io.WriteString(w, "...")
			io.WriteString(w, v.Type().Underlying().(*types.Slice).Elem().String())
		} else {
			io.WriteString(w, v.Type().String())
		}
	}
	io.WriteString(w, ")")
	if n := sig.Results().Len(); n > 0 {
		io.WriteString(w, " ")
		r := sig.Results()
		if n == 1 && r.At(0).Name() == "" {
			io.WriteString(w, r.At(0).Type().String())
		} else {
			io.WriteString(w, r.String())
		}
	}
}
Пример #12
0
func (p *exporter) signature(sig *types.Signature) {
	// TODO(gri) We only need to record the receiver type
	//           for interface methods if we flatten them
	//           out. If we track embedded types instead,
	//           the information is already present.
	// We do need the receiver information (T vs *T)
	// for methods associated with named types.
	if recv := sig.Recv(); recv != nil {
		// 1-element tuple
		p.int(1)
		p.param(recv)
	} else {
		// 0-element tuple
		p.int(0)
	}
	p.tuple(sig.Params())
	p.tuple(sig.Results())
	if sig.Variadic() {
		p.int(1)
	} else {
		p.int(0)
	}
}
Пример #13
0
func (ts *TypeStringer) writeSignature(buf *bytes.Buffer, sig *types.Signature, unique bool) {
	if recv := sig.Recv(); recv != nil {
		if _, ok := recv.Type().Underlying().(*types.Interface); !ok {
			ts.writeType(buf, recv.Type(), unique)
			buf.WriteByte(' ')
		}
	}

	ts.writeParams(buf, sig.Params(), sig.IsVariadic(), unique)
	if sig.Results().Len() == 0 {
		// no result
		return
	}

	buf.WriteByte(' ')
	if sig.Results().Len() == 1 {
		// single unnamed result
		ts.writeType(buf, sig.Results().At(0).Type(), unique)
		return
	}

	// multiple or named result(s)
	ts.writeParams(buf, sig.Results(), false, unique)
}