Пример #1
0
func (p *exporter) signature(sig *types.Signature) {
	// We need the receiver information (T vs *T)
	// for methods associated with named types.
	// We do not record interface receiver types in the
	// export data because 1) the importer can derive them
	// from the interface type and 2) they create cycles
	// in the type graph.
	if recv := sig.Recv(); recv != nil {
		if _, ok := recv.Type().Underlying().(*types.Interface); !ok {
			// 1-element tuple
			p.int(1)
			p.param(recv)
		} else {
			// 0-element tuple
			p.int(0)
		}
	} else {
		// 0-element tuple
		p.int(0)
	}
	p.tuple(sig.Params())
	p.tuple(sig.Results())
	if sig.Variadic() {
		p.int(1)
	} else {
		p.int(0)
	}
}
Пример #2
0
func (tm *llvmTypeMap) funcLLVMType(f *types.Signature, name string) llvm.Type {
	// If there's a receiver change the receiver to an
	// additional (first) parameter, and take the value of
	// the resulting signature instead.
	if recv := f.Recv(); recv != nil {
		params := f.Params()
		paramvars := make([]*types.Var, int(params.Len()+1))
		paramvars[0] = recv
		for i := 0; i < int(params.Len()); i++ {
			paramvars[i+1] = params.At(i)
		}
		params = types.NewTuple(paramvars...)
		f := types.NewSignature(nil, nil, params, f.Results(), f.Variadic())
		return tm.toLLVM(f, name)
	}

	if typ, ok := tm.types.At(f).(llvm.Type); ok {
		return typ
	}
	typ := llvm.GlobalContext().StructCreateNamed(name)
	tm.types.Set(f, typ)

	params := f.Params()
	param_types := make([]llvm.Type, params.Len())
	for i := range param_types {
		llvmtyp := tm.ToLLVM(params.At(i).Type())
		param_types[i] = llvmtyp
	}

	var return_type llvm.Type
	results := f.Results()
	switch nresults := int(results.Len()); nresults {
	case 0:
		return_type = llvm.VoidType()
	case 1:
		return_type = tm.ToLLVM(results.At(0).Type())
	default:
		elements := make([]llvm.Type, nresults)
		for i := range elements {
			result := results.At(i)
			elements[i] = tm.ToLLVM(result.Type())
		}
		return_type = llvm.StructType(elements, false)
	}

	fntyp := llvm.FunctionType(return_type, param_types, false)
	fnptrtyp := llvm.PointerType(fntyp, 0)
	i8ptr := llvm.PointerType(llvm.Int8Type(), 0)
	elements := []llvm.Type{fnptrtyp, i8ptr} // func, closure
	typ.StructSetBody(elements, false)
	return typ
}
Пример #3
0
func (f *Finder) call(sig *types.Signature, args []ast.Expr) {
	if len(args) == 0 {
		return
	}

	// Ellipsis call?  e.g. f(x, y, z...)
	if _, ok := args[len(args)-1].(*ast.Ellipsis); ok {
		for i, arg := range args {
			// The final arg is a slice, and so is the final param.
			f.assign(sig.Params().At(i).Type(), f.expr(arg))
		}
		return
	}

	var argtypes []types.Type

	// Gather the effective actual parameter types.
	if tuple, ok := f.info.Types[args[0]].Type.(*types.Tuple); ok {
		// f(g()) call where g has multiple results?
		f.expr(args[0])
		// unpack the tuple
		for i := 0; i < tuple.Len(); i++ {
			argtypes = append(argtypes, tuple.At(i).Type())
		}
	} else {
		for _, arg := range args {
			argtypes = append(argtypes, f.expr(arg))
		}
	}

	// Assign the actuals to the formals.
	if !sig.Variadic() {
		for i, argtype := range argtypes {
			f.assign(sig.Params().At(i).Type(), argtype)
		}
	} else {
		// The first n-1 parameters are assigned normally.
		nnormals := sig.Params().Len() - 1
		for i, argtype := range argtypes[:nnormals] {
			f.assign(sig.Params().At(i).Type(), argtype)
		}
		// Remaining args are assigned to elements of varargs slice.
		tElem := sig.Params().At(nnormals).Type().(*types.Slice).Elem()
		for i := nnormals; i < len(argtypes); i++ {
			f.assign(tElem, argtypes[i])
		}
	}
}
Пример #4
0
func (c *funcContext) translateArgs(sig *types.Signature, args []ast.Expr, ellipsis bool) []string {
	params := make([]string, sig.Params().Len())
	for i := range params {
		if sig.Variadic() && i == len(params)-1 && !ellipsis {
			varargType := sig.Params().At(i).Type().(*types.Slice)
			varargs := make([]string, len(args)-i)
			for j, arg := range args[i:] {
				varargs[j] = c.translateImplicitConversionWithCloning(arg, varargType.Elem()).String()
			}
			params[i] = fmt.Sprintf("new %s([%s])", c.typeName(varargType), strings.Join(varargs, ", "))
			break
		}
		argType := sig.Params().At(i).Type()
		params[i] = c.translateImplicitConversionWithCloning(args[i], argType).String()
	}
	return params
}
Пример #5
0
func (m *TypeMap) descriptorSignature(t *types.Signature, name string) TypeDebugDescriptor {
	// If there's a receiver change the receiver to an
	// additional (first) parameter, and take the value of
	// the resulting signature instead.
	if recv := t.Recv(); recv != nil {
		params := t.Params()
		paramvars := make([]*types.Var, int(params.Len()+1))
		paramvars[0] = recv
		for i := 0; i < int(params.Len()); i++ {
			paramvars[i+1] = params.At(i)
		}
		params = types.NewTuple(paramvars...)
		t := types.NewSignature(nil, nil, params, t.Results(), t.Variadic())
		return m.typeDebugDescriptor(t, name)
	}
	if dt, ok := m.m.At(t).(TypeDebugDescriptor); ok {
		return dt
	}

	var returnType DebugDescriptor
	var paramTypes []DebugDescriptor
	if results := t.Results(); results.Len() == 1 {
		returnType = m.TypeDebugDescriptor(results.At(0).Type())
	} else if results != nil {
		fields := make([]DebugDescriptor, results.Len())
		for i := range fields {
			fields[i] = m.TypeDebugDescriptor(results.At(i).Type())
		}
		returnType = NewStructCompositeType(fields)
	}
	if params := t.Params(); params != nil && params.Len() > 0 {
		paramTypes = make([]DebugDescriptor, params.Len())
		for i := range paramTypes {
			paramTypes[i] = m.TypeDebugDescriptor(params.At(i).Type())
		}
	}
	ct := NewStructCompositeType([]DebugDescriptor{
		NewSubroutineCompositeType(returnType, paramTypes),
		m.TypeDebugDescriptor(types.NewPointer(types.Typ[types.Uint8])),
	})
	ct.Name = name
	m.m.Set(t, ct)
	return ct
}
Пример #6
0
func (p *printer) writeSignatureInternal(this *types.Package, sig *types.Signature, visited []types.Type) {
	p.writeTuple(this, sig.Params(), sig.Variadic(), visited)

	res := sig.Results()
	n := res.Len()
	if n == 0 {
		// no result
		return
	}

	p.print(" ")
	if n == 1 && res.At(0).Name() == "" {
		// single unnamed result
		p.writeTypeInternal(this, res.At(0).Type(), visited)
		return
	}

	// multiple or named result(s)
	p.writeTuple(this, res, false, visited)
}
Пример #7
0
func (tm *TypeMap) funcRuntimeType(f *types.Signature) (global, ptr llvm.Value) {
	rtype := tm.makeRtype(f, reflect.Func)
	funcType := llvm.ConstNull(tm.runtime.funcType.llvm)
	global, ptr = tm.makeRuntimeTypeGlobal(funcType, typeString(f))
	tm.types.Set(f, runtimeTypeInfo{global, ptr})
	funcType = llvm.ConstInsertValue(funcType, rtype, []uint32{0})
	// dotdotdot
	if f.Variadic() {
		variadic := llvm.ConstInt(llvm.Int1Type(), 1, false)
		funcType = llvm.ConstInsertValue(funcType, variadic, []uint32{1})
	}
	// in
	intypes := tm.rtypeSlice(f.Params())
	funcType = llvm.ConstInsertValue(funcType, intypes, []uint32{2})
	// out
	outtypes := tm.rtypeSlice(f.Results())
	funcType = llvm.ConstInsertValue(funcType, outtypes, []uint32{3})
	global.SetInitializer(funcType)
	return global, ptr
}
Пример #8
0
func (p *exporter) signature(sig *types.Signature) {
	// TODO(gri) We only need to record the receiver type
	//           for interface methods if we flatten them
	//           out. If we track embedded types instead,
	//           the information is already present.
	// We do need the receiver information (T vs *T)
	// for methods associated with named types.
	if recv := sig.Recv(); recv != nil {
		// 1-element tuple
		p.int(1)
		p.param(recv)
	} else {
		// 0-element tuple
		p.int(0)
	}
	p.tuple(sig.Params())
	p.tuple(sig.Results())
	if sig.Variadic() {
		p.int(1)
	} else {
		p.int(0)
	}
}
Пример #9
0
func changeRecv(s *types.Signature, recv *types.Var) *types.Signature {
	return types.NewSignature(nil, recv, s.Params(), s.Results(), s.Variadic())
}