Пример #1
0
// removeTransaction is the internal function which implements the public
// RemoveTransaction.  See the comment for RemoveTransaction for more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) removeTransaction(tx *btcutil.Tx, removeRedeemers bool) {
	txHash := tx.Sha()
	if removeRedeemers {
		// Remove any transactions which rely on this one.
		for i := uint32(0); i < uint32(len(tx.MsgTx().TxOut)); i++ {
			outpoint := wire.NewOutPoint(txHash, i)
			if txRedeemer, exists := mp.outpoints[*outpoint]; exists {
				mp.removeTransaction(txRedeemer, true)
			}
		}
	}

	// Remove the transaction and mark the referenced outpoints as unspent
	// by the pool.
	if txDesc, exists := mp.pool[*txHash]; exists {
		if mp.cfg.EnableAddrIndex {
			mp.removeTransactionFromAddrIndex(tx)
		}

		for _, txIn := range txDesc.Tx.MsgTx().TxIn {
			delete(mp.outpoints, txIn.PreviousOutPoint)
		}
		delete(mp.pool, *txHash)
		atomic.StoreInt64(&mp.lastUpdated, time.Now().Unix())
	}

}
Пример #2
0
// removeTransaction is the internal function which implements the public
// RemoveTransaction.  See the comment for RemoveTransaction for more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) removeTransaction(tx *btcutil.Tx, removeRedeemers bool) {
	txHash := tx.Hash()
	if removeRedeemers {
		// Remove any transactions which rely on this one.
		for i := uint32(0); i < uint32(len(tx.MsgTx().TxOut)); i++ {
			prevOut := wire.OutPoint{Hash: *txHash, Index: i}
			if txRedeemer, exists := mp.outpoints[prevOut]; exists {
				mp.removeTransaction(txRedeemer, true)
			}
		}
	}

	// Remove the transaction if needed.
	if txDesc, exists := mp.pool[*txHash]; exists {
		// Remove unconfirmed address index entries associated with the
		// transaction if enabled.
		if mp.cfg.AddrIndex != nil {
			mp.cfg.AddrIndex.RemoveUnconfirmedTx(txHash)
		}

		// Mark the referenced outpoints as unspent by the pool.
		for _, txIn := range txDesc.Tx.MsgTx().TxIn {
			delete(mp.outpoints, txIn.PreviousOutPoint)
		}
		delete(mp.pool, *txHash)
		atomic.StoreInt64(&mp.lastUpdated, time.Now().Unix())
	}
}
Пример #3
0
// calcPriority returns a transaction priority given a transaction and the sum
// of each of its input values multiplied by their age (# of confirmations).
// Thus, the final formula for the priority is:
// sum(inputValue * inputAge) / adjustedTxSize
func calcPriority(tx *btcutil.Tx, inputValueAge float64) float64 {
	// In order to encourage spending multiple old unspent transaction
	// outputs thereby reducing the total set, don't count the constant
	// overhead for each input as well as enough bytes of the signature
	// script to cover a pay-to-script-hash redemption with a compressed
	// pubkey.  This makes additional inputs free by boosting the priority
	// of the transaction accordingly.  No more incentive is given to avoid
	// encouraging gaming future transactions through the use of junk
	// outputs.  This is the same logic used in the reference
	// implementation.
	//
	// The constant overhead for a txin is 41 bytes since the previous
	// outpoint is 36 bytes + 4 bytes for the sequence + 1 byte the
	// signature script length.
	//
	// A compressed pubkey pay-to-script-hash redemption with a maximum len
	// signature is of the form:
	// [OP_DATA_73 <73-byte sig> + OP_DATA_35 + {OP_DATA_33
	// <33 byte compresed pubkey> + OP_CHECKSIG}]
	//
	// Thus 1 + 73 + 1 + 1 + 33 + 1 = 110
	overhead := 0
	for _, txIn := range tx.MsgTx().TxIn {
		// Max inputs + size can't possibly overflow here.
		overhead += 41 + minInt(110, len(txIn.SignatureScript))
	}

	serializedTxSize := tx.MsgTx().SerializeSize()
	if overhead >= serializedTxSize {
		return 0.0
	}

	return inputValueAge / float64(serializedTxSize-overhead)
}
Пример #4
0
// ExtractCoinbaseHeight attempts to extract the height of the block from the
// scriptSig of a coinbase transaction.  Coinbase heights are only present in
// blocks of version 2 or later.  This was added as part of BIP0034.
func ExtractCoinbaseHeight(coinbaseTx *btcutil.Tx) (int32, error) {
	sigScript := coinbaseTx.MsgTx().TxIn[0].SignatureScript
	if len(sigScript) < 1 {
		str := "the coinbase signature script for blocks of " +
			"version %d or greater must start with the " +
			"length of the serialized block height"
		str = fmt.Sprintf(str, serializedHeightVersion)
		return 0, ruleError(ErrMissingCoinbaseHeight, str)
	}

	serializedLen := int(sigScript[0])
	if len(sigScript[1:]) < serializedLen {
		str := "the coinbase signature script for blocks of " +
			"version %d or greater must start with the " +
			"serialized block height"
		str = fmt.Sprintf(str, serializedLen)
		return 0, ruleError(ErrMissingCoinbaseHeight, str)
	}

	serializedHeightBytes := make([]byte, 8, 8)
	copy(serializedHeightBytes, sigScript[1:serializedLen+1])
	serializedHeight := binary.LittleEndian.Uint64(serializedHeightBytes)

	return int32(serializedHeight), nil
}
Пример #5
0
// IsFinalizedTransaction determines whether or not a transaction is finalized.
func IsFinalizedTransaction(tx *btcutil.Tx, blockHeight int32, blockTime time.Time) bool {
	msgTx := tx.MsgTx()

	// Lock time of zero means the transaction is finalized.
	lockTime := msgTx.LockTime
	if lockTime == 0 {
		return true
	}

	// The lock time field of a transaction is either a block height at
	// which the transaction is finalized or a timestamp depending on if the
	// value is before the txscript.LockTimeThreshold.  When it is under the
	// threshold it is a block height.
	blockTimeOrHeight := int64(0)
	if lockTime < txscript.LockTimeThreshold {
		blockTimeOrHeight = int64(blockHeight)
	} else {
		blockTimeOrHeight = blockTime.Unix()
	}
	if int64(lockTime) < blockTimeOrHeight {
		return true
	}

	// At this point, the transaction's lock time hasn't occurred yet, but
	// the transaction might still be finalized if the sequence number
	// for all transaction inputs is maxed out.
	for _, txIn := range msgTx.TxIn {
		if txIn.Sequence != math.MaxUint32 {
			return false
		}
	}
	return true
}
Пример #6
0
// ValidateTransactionScripts validates the scripts for the passed transaction
// using multiple goroutines.
func ValidateTransactionScripts(tx *btcutil.Tx, utxoView *UtxoViewpoint, flags txscript.ScriptFlags, sigCache *txscript.SigCache) error {
	// Collect all of the transaction inputs and required information for
	// validation.
	txIns := tx.MsgTx().TxIn
	txValItems := make([]*txValidateItem, 0, len(txIns))
	for txInIdx, txIn := range txIns {
		// Skip coinbases.
		if txIn.PreviousOutPoint.Index == math.MaxUint32 {
			continue
		}

		txVI := &txValidateItem{
			txInIndex: txInIdx,
			txIn:      txIn,
			tx:        tx,
		}
		txValItems = append(txValItems, txVI)
	}

	// Validate all of the inputs.
	validator := newTxValidator(utxoView, flags, sigCache)
	if err := validator.Validate(txValItems); err != nil {
		return err
	}

	return nil
}
Пример #7
0
// checkInputsStandard performs a series of checks on a transaction's inputs
// to ensure they are "standard".  A standard transaction input within the
// context of this function is one whose referenced public key script is of a
// standard form and, for pay-to-script-hash, does not have more than
// maxStandardP2SHSigOps signature operations.  However, it should also be noted
// that standard inputs also are those which have a clean stack after execution
// and only contain pushed data in their signature scripts.  This function does
// not perform those checks because the script engine already does this more
// accurately and concisely via the txscript.ScriptVerifyCleanStack and
// txscript.ScriptVerifySigPushOnly flags.
func checkInputsStandard(tx *btcutil.Tx, utxoView *blockchain.UtxoViewpoint) error {
	// NOTE: The reference implementation also does a coinbase check here,
	// but coinbases have already been rejected prior to calling this
	// function so no need to recheck.

	for i, txIn := range tx.MsgTx().TxIn {
		// It is safe to elide existence and index checks here since
		// they have already been checked prior to calling this
		// function.
		prevOut := txIn.PreviousOutPoint
		entry := utxoView.LookupEntry(&prevOut.Hash)
		originPkScript := entry.PkScriptByIndex(prevOut.Index)
		switch txscript.GetScriptClass(originPkScript) {
		case txscript.ScriptHashTy:
			numSigOps := txscript.GetPreciseSigOpCount(
				txIn.SignatureScript, originPkScript, true)
			if numSigOps > maxStandardP2SHSigOps {
				str := fmt.Sprintf("transaction input #%d has "+
					"%d signature operations which is more "+
					"than the allowed max amount of %d",
					i, numSigOps, maxStandardP2SHSigOps)
				return txRuleError(wire.RejectNonstandard, str)
			}

		case txscript.NonStandardTy:
			str := fmt.Sprintf("transaction input #%d has a "+
				"non-standard script form", i)
			return txRuleError(wire.RejectNonstandard, str)
		}
	}

	return nil
}
Пример #8
0
// checkSerializedHeight checks if the signature script in the passed
// transaction starts with the serialized block height of wantHeight.
func checkSerializedHeight(coinbaseTx *btcutil.Tx, wantHeight int64) error {
	sigScript := coinbaseTx.MsgTx().TxIn[0].SignatureScript
	if len(sigScript) < 1 {
		str := "the coinbase signature script for blocks of " +
			"version %d or greater must start with the " +
			"length of the serialized block height"
		str = fmt.Sprintf(str, serializedHeightVersion)
		return ruleError(ErrMissingCoinbaseHeight, str)
	}

	serializedLen := int(sigScript[0])
	if len(sigScript[1:]) < serializedLen {
		str := "the coinbase signature script for blocks of " +
			"version %d or greater must start with the " +
			"serialized block height"
		str = fmt.Sprintf(str, serializedLen)
		return ruleError(ErrMissingCoinbaseHeight, str)
	}

	serializedHeightBytes := make([]byte, 8, 8)
	copy(serializedHeightBytes, sigScript[1:serializedLen+1])
	serializedHeight := binary.LittleEndian.Uint64(serializedHeightBytes)
	if int64(serializedHeight) != wantHeight {
		str := fmt.Sprintf("the coinbase signature script serialized "+
			"block height is %d when %d was expected",
			serializedHeight, wantHeight)
		return ruleError(ErrBadCoinbaseHeight, str)
	}

	return nil
}
Пример #9
0
// removeTransaction is the internal function which implements the public
// RemoveTransaction.  See the comment for RemoveTransaction for more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) removeTransaction(tx *btcutil.Tx) {
	// Remove any transactions which rely on this one.
	txHash := tx.Sha()
	for i := uint32(0); i < uint32(len(tx.MsgTx().TxOut)); i++ {
		outpoint := wire.NewOutPoint(txHash, i)
		if txRedeemer, exists := mp.outpoints[*outpoint]; exists {
			mp.removeTransaction(txRedeemer)
		}
	}

	// Remove the transaction and mark the referenced outpoints as unspent
	// by the pool.
	if txDesc, exists := mp.pool[*txHash]; exists {
		if cfg.AddrIndex {
			mp.removeTransactionFromAddrIndex(tx)
		}

		for _, txIn := range txDesc.Tx.MsgTx().TxIn {
			delete(mp.outpoints, txIn.PreviousOutPoint)
		}
		delete(mp.pool, *txHash)
		mp.lastUpdated = time.Now()
	}

}
Пример #10
0
func serializeTx(tx *btcutil.Tx) []byte {
	var buf bytes.Buffer
	err := tx.MsgTx().Serialize(&buf)
	if err != nil {
		panic(err)
	}
	return buf.Bytes()
}
Пример #11
0
// removeOrphanDoubleSpends removes all orphans which spend outputs spent by the
// passed transaction from the orphan pool.  Removing those orphans then leads
// to removing all orphans which rely on them, recursively.  This is necessary
// when a transaction is added to the main pool because it may spend outputs
// that orphans also spend.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) removeOrphanDoubleSpends(tx *btcutil.Tx) {
	msgTx := tx.MsgTx()
	for _, txIn := range msgTx.TxIn {
		for _, orphan := range mp.orphansByPrev[txIn.PreviousOutPoint] {
			mp.removeOrphan(orphan, true)
		}
	}
}
Пример #12
0
// getUtxo returns a TxOut from Tx and Vout
func (com *Communication) getUtxo(tx *btcutil.Tx,
	vout *wire.TxOut, index uint32) *TxOut {
	op := wire.NewOutPoint(tx.Sha(), index)
	unspent := TxOut{
		OutPoint: op,
		Amount:   btcutil.Amount(vout.Value),
	}
	return &unspent
}
Пример #13
0
// ProcessTransaction is the main workhorse for handling insertion of new
// free-standing transactions into the memory pool.  It includes functionality
// such as rejecting duplicate transactions, ensuring transactions follow all
// rules, orphan transaction handling, and insertion into the memory pool.
//
// It returns a slice of transactions added to the mempool.  When the
// error is nil, the list will include the passed transaction itself along
// with any additional orphan transaactions that were added as a result of
// the passed one being accepted.
//
// This function is safe for concurrent access.
func (mp *TxPool) ProcessTransaction(tx *btcutil.Tx, allowOrphan, rateLimit bool, tag Tag) ([]*TxDesc, error) {
	log.Tracef("Processing transaction %v", tx.Hash())

	// Protect concurrent access.
	mp.mtx.Lock()
	defer mp.mtx.Unlock()

	// Potentially accept the transaction to the memory pool.
	missingParents, txD, err := mp.maybeAcceptTransaction(tx, true, rateLimit,
		true)
	if err != nil {
		return nil, err
	}

	if len(missingParents) == 0 {
		// Accept any orphan transactions that depend on this
		// transaction (they may no longer be orphans if all inputs
		// are now available) and repeat for those accepted
		// transactions until there are no more.
		newTxs := mp.processOrphans(tx)
		acceptedTxs := make([]*TxDesc, len(newTxs)+1)

		// Add the parent transaction first so remote nodes
		// do not add orphans.
		acceptedTxs[0] = txD
		copy(acceptedTxs[1:], newTxs)

		return acceptedTxs, nil
	}

	// The transaction is an orphan (has inputs missing).  Reject
	// it if the flag to allow orphans is not set.
	if !allowOrphan {
		// Only use the first missing parent transaction in
		// the error message.
		//
		// NOTE: RejectDuplicate is really not an accurate
		// reject code here, but it matches the reference
		// implementation and there isn't a better choice due
		// to the limited number of reject codes.  Missing
		// inputs is assumed to mean they are already spent
		// which is not really always the case.
		str := fmt.Sprintf("orphan transaction %v references "+
			"outputs of unknown or fully-spent "+
			"transaction %v", tx.Hash(), missingParents[0])
		return nil, txRuleError(wire.RejectDuplicate, str)
	}

	// Potentially add the orphan transaction to the orphan pool.
	err = mp.maybeAddOrphan(tx, tag)
	if err != nil {
		return nil, err
	}

	return nil, nil
}
Пример #14
0
// isNonstandardTransaction determines whether a transaction contains any
// scripts which are not one of the standard types.
func isNonstandardTransaction(tx *btcutil.Tx) bool {
	// Check all of the output public key scripts for non-standard scripts.
	for _, txOut := range tx.MsgTx().TxOut {
		scriptClass := txscript.GetScriptClass(txOut.PkScript)
		if scriptClass == txscript.NonStandardTy {
			return true
		}
	}
	return false
}
Пример #15
0
// logSkippedDeps logs any dependencies which are also skipped as a result of
// skipping a transaction while generating a block template at the trace level.
func logSkippedDeps(tx *btcutil.Tx, deps map[chainhash.Hash]*txPrioItem) {
	if deps == nil {
		return
	}

	for _, item := range deps {
		log.Tracef("Skipping tx %s since it depends on %s\n",
			item.tx.Hash(), tx.Hash())
	}
}
Пример #16
0
// logSkippedDeps logs any dependencies which are also skipped as a result of
// skipping a transaction while generating a block template at the trace level.
func logSkippedDeps(tx *btcutil.Tx, deps *list.List) {
	if deps == nil {
		return
	}

	for e := deps.Front(); e != nil; e = e.Next() {
		item := e.Value.(*txPrioItem)
		minrLog.Tracef("Skipping tx %s since it depends on %s\n",
			item.tx.Sha(), tx.Sha())
	}
}
Пример #17
0
// isNonstandardTransaction determines whether a transaction contains any
// scripts which are not one of the standard types.
func isNonstandardTransaction(tx *btcutil.Tx) bool {
	// TODO(davec): Should there be checks for the input signature scripts?

	// Check all of the output public key scripts for non-standard scripts.
	for _, txOut := range tx.MsgTx().TxOut {
		scriptClass := txscript.GetScriptClass(txOut.PkScript)
		if scriptClass == txscript.NonStandardTy {
			return true
		}
	}
	return false
}
Пример #18
0
// checkPoolDoubleSpend checks whether or not the passed transaction is
// attempting to spend coins already spent by other transactions in the pool.
// Note it does not check for double spends against transactions already in the
// main chain.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *txMemPool) checkPoolDoubleSpend(tx *btcutil.Tx) error {
	for _, txIn := range tx.MsgTx().TxIn {
		if txR, exists := mp.outpoints[txIn.PreviousOutPoint]; exists {
			str := fmt.Sprintf("output %v already spent by "+
				"transaction %v in the memory pool",
				txIn.PreviousOutPoint, txR.Sha())
			return txRuleError(wire.RejectDuplicate, str)
		}
	}

	return nil
}
Пример #19
0
// RemoveDoubleSpends removes all transactions which spend outputs spent by the
// passed transaction from the memory pool.  Removing those transactions then
// leads to removing all transactions which rely on them, recursively.  This is
// necessary when a block is connected to the main chain because the block may
// contain transactions which were previously unknown to the memory pool.
//
// This function is safe for concurrent access.
func (mp *TxPool) RemoveDoubleSpends(tx *btcutil.Tx) {
	// Protect concurrent access.
	mp.mtx.Lock()
	for _, txIn := range tx.MsgTx().TxIn {
		if txRedeemer, ok := mp.outpoints[txIn.PreviousOutPoint]; ok {
			if !txRedeemer.Hash().IsEqual(tx.Hash()) {
				mp.removeTransaction(txRedeemer, true)
			}
		}
	}
	mp.mtx.Unlock()
}
Пример #20
0
// spendTransaction updates the passed view by marking the inputs to the passed
// transaction as spent.  It also adds all outputs in the passed transaction
// which are not provably unspendable as available unspent transaction outputs.
func spendTransaction(utxoView *blockchain.UtxoViewpoint, tx *btcutil.Tx, height int32) error {
	for _, txIn := range tx.MsgTx().TxIn {
		originHash := &txIn.PreviousOutPoint.Hash
		originIndex := txIn.PreviousOutPoint.Index
		entry := utxoView.LookupEntry(originHash)
		if entry != nil {
			entry.SpendOutput(originIndex)
		}
	}

	utxoView.AddTxOuts(tx, height)
	return nil
}
Пример #21
0
// connectTransaction updates the view by adding all new utxos created by the
// passed transaction and marking all utxos that the transactions spend as
// spent.  In addition, when the 'stxos' argument is not nil, it will be updated
// to append an entry for each spent txout.  An error will be returned if the
// view does not contain the required utxos.
func (view *UtxoViewpoint) connectTransaction(tx *btcutil.Tx, blockHeight int32, stxos *[]spentTxOut) error {
	// Coinbase transactions don't have any inputs to spend.
	if IsCoinBase(tx) {
		// Add the transaction's outputs as available utxos.
		view.AddTxOuts(tx, blockHeight)
		return nil
	}

	// Spend the referenced utxos by marking them spent in the view and,
	// if a slice was provided for the spent txout details, append an entry
	// to it.
	for _, txIn := range tx.MsgTx().TxIn {
		originIndex := txIn.PreviousOutPoint.Index
		entry := view.entries[txIn.PreviousOutPoint.Hash]

		// Ensure the referenced utxo exists in the view.  This should
		// never happen unless there is a bug is introduced in the code.
		if entry == nil {
			return AssertError(fmt.Sprintf("view missing input %v",
				txIn.PreviousOutPoint))
		}
		entry.SpendOutput(originIndex)

		// Don't create the stxo details if not requested.
		if stxos == nil {
			continue
		}

		// Populate the stxo details using the utxo entry.  When the
		// transaction is fully spent, set the additional stxo fields
		// accordingly since those details will no longer be available
		// in the utxo set.
		var stxo = spentTxOut{
			compressed: false,
			version:    entry.Version(),
			amount:     entry.AmountByIndex(originIndex),
			pkScript:   entry.PkScriptByIndex(originIndex),
		}
		if entry.IsFullySpent() {
			stxo.height = entry.BlockHeight()
			stxo.isCoinBase = entry.IsCoinBase()
		}

		// Append the entry to the provided spent txouts slice.
		*stxos = append(*stxos, stxo)
	}

	// Add the transaction's outputs as available utxos.
	view.AddTxOuts(tx, blockHeight)
	return nil
}
Пример #22
0
// addOrphan adds an orphan transaction to the orphan pool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) addOrphan(tx *btcutil.Tx, tag Tag) {
	// Nothing to do if no orphans are allowed.
	if mp.cfg.Policy.MaxOrphanTxs <= 0 {
		return
	}

	// Limit the number orphan transactions to prevent memory exhaustion.
	// This will periodically remove any expired orphans and evict a random
	// orphan if space is still needed.
	mp.limitNumOrphans()

	mp.orphans[*tx.Hash()] = &orphanTx{
		tx:         tx,
		tag:        tag,
		expiration: time.Now().Add(orphanTTL),
	}
	for _, txIn := range tx.MsgTx().TxIn {
		if _, exists := mp.orphansByPrev[txIn.PreviousOutPoint]; !exists {
			mp.orphansByPrev[txIn.PreviousOutPoint] =
				make(map[chainhash.Hash]*btcutil.Tx)
		}
		mp.orphansByPrev[txIn.PreviousOutPoint][*tx.Hash()] = tx
	}

	log.Debugf("Stored orphan transaction %v (total: %d)", tx.Hash(),
		len(mp.orphans))
}
Пример #23
0
// removeScriptFromAddrIndex dissociates the address encoded by the
// passed pkScript from the passed tx in our address based tx index.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) removeScriptFromAddrIndex(pkScript []byte, tx *btcutil.Tx) error {
	_, addresses, _, err := txscript.ExtractPkScriptAddrs(pkScript,
		activeNetParams.Params)
	if err != nil {
		txmpLog.Errorf("Unable to extract encoded addresses from script "+
			"for addrindex (addrindex): %v", err)
		return err
	}
	for _, addr := range addresses {
		delete(mp.addrindex[addr.EncodeAddress()], *tx.Sha())
	}

	return nil
}
Пример #24
0
// addTransaction adds the passed transaction to the memory pool.  It should
// not be called directly as it doesn't perform any validation.  This is a
// helper for maybeAcceptTransaction.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *TxPool) addTransaction(utxoView *blockchain.UtxoViewpoint, tx *btcutil.Tx, height int32, fee int64) *TxDesc {
	// Add the transaction to the pool and mark the referenced outpoints
	// as spent by the pool.
	txD := &TxDesc{
		TxDesc: mining.TxDesc{
			Tx:       tx,
			Added:    time.Now(),
			Height:   height,
			Fee:      fee,
			FeePerKB: fee * 1000 / int64(tx.MsgTx().SerializeSize()),
		},
		StartingPriority: mining.CalcPriority(tx.MsgTx(), utxoView, height),
	}
	mp.pool[*tx.Hash()] = txD

	for _, txIn := range tx.MsgTx().TxIn {
		mp.outpoints[txIn.PreviousOutPoint] = tx
	}
	atomic.StoreInt64(&mp.lastUpdated, time.Now().Unix())

	// Add unconfirmed address index entries associated with the transaction
	// if enabled.
	if mp.cfg.AddrIndex != nil {
		mp.cfg.AddrIndex.AddUnconfirmedTx(tx, utxoView)
	}

	return txD
}
Пример #25
0
// CountP2SHSigOps returns the number of signature operations for all input
// transactions which are of the pay-to-script-hash type.  This uses the
// precise, signature operation counting mechanism from the script engine which
// requires access to the input transaction scripts.
func CountP2SHSigOps(tx *btcutil.Tx, isCoinBaseTx bool, utxoView *UtxoViewpoint) (int, error) {
	// Coinbase transactions have no interesting inputs.
	if isCoinBaseTx {
		return 0, nil
	}

	// Accumulate the number of signature operations in all transaction
	// inputs.
	msgTx := tx.MsgTx()
	totalSigOps := 0
	for txInIndex, txIn := range msgTx.TxIn {
		// Ensure the referenced input transaction is available.
		originTxHash := &txIn.PreviousOutPoint.Hash
		originTxIndex := txIn.PreviousOutPoint.Index
		txEntry := utxoView.LookupEntry(originTxHash)
		if txEntry == nil || txEntry.IsOutputSpent(originTxIndex) {
			str := fmt.Sprintf("unable to find unspent output "+
				"%v referenced from transaction %s:%d",
				txIn.PreviousOutPoint, tx.Hash(), txInIndex)
			return 0, ruleError(ErrMissingTx, str)
		}

		// We're only interested in pay-to-script-hash types, so skip
		// this input if it's not one.
		pkScript := txEntry.PkScriptByIndex(originTxIndex)
		if !txscript.IsPayToScriptHash(pkScript) {
			continue
		}

		// Count the precise number of signature operations in the
		// referenced public key script.
		sigScript := txIn.SignatureScript
		numSigOps := txscript.GetPreciseSigOpCount(sigScript, pkScript,
			true)

		// We could potentially overflow the accumulator so check for
		// overflow.
		lastSigOps := totalSigOps
		totalSigOps += numSigOps
		if totalSigOps < lastSigOps {
			str := fmt.Sprintf("the public key script from output "+
				"%v contains too many signature operations - "+
				"overflow", txIn.PreviousOutPoint)
			return 0, ruleError(ErrTooManySigOps, str)
		}
	}

	return totalSigOps, nil
}
Пример #26
0
// matchTxAndUpdate returns true if the bloom filter matches data within the
// passed transaction, otherwise false is returned.  If the filter does match
// the passed transaction, it will also update the filter depending on the bloom
// update flags set via the loaded filter if needed.
//
// This function MUST be called with the filter lock held.
func (bf *Filter) matchTxAndUpdate(tx *btcutil.Tx) bool {
	// Check if the filter matches the hash of the transaction.
	// This is useful for finding transactions when they appear in a block.
	matched := bf.matches(tx.Sha()[:])

	// Check if the filter matches any data elements in the public key
	// scripts of any of the outputs.  When it does, add the outpoint that
	// matched so transactions which spend from the matched transaction are
	// also included in the filter.  This removes the burden of updating the
	// filter for this scenario from the client.  It is also more efficient
	// on the network since it avoids the need for another filteradd message
	// from the client and avoids some potential races that could otherwise
	// occur.
	for i, txOut := range tx.MsgTx().TxOut {
		pushedData, err := txscript.PushedData(txOut.PkScript)
		if err != nil {
			continue
		}

		for _, data := range pushedData {
			if !bf.matches(data) {
				continue
			}

			matched = true
			bf.maybeAddOutpoint(txOut.PkScript, tx.Sha(), uint32(i))
			break
		}
	}

	// Nothing more to do if a match has already been made.
	if matched {
		return true
	}

	// At this point, the transaction and none of the data elements in the
	// public key scripts of its outputs matched.

	// Check if the filter matches any outpoints this transaction spends or
	// any any data elements in the signature scripts of any of the inputs.
	for _, txin := range tx.MsgTx().TxIn {
		if bf.matchesOutPoint(&txin.PreviousOutPoint) {
			return true
		}

		pushedData, err := txscript.PushedData(txin.SignatureScript)
		if err != nil {
			continue
		}
		for _, data := range pushedData {
			if bf.matches(data) {
				return true
			}
		}
	}

	return false
}
Пример #27
0
// FetchTransactionStore fetches the input transactions referenced by the
// passed transaction from the point of view of the end of the main chain.  It
// also attempts to fetch the transaction itself so the returned TxStore can be
// examined for duplicate transactions.
func (b *BlockChain) FetchTransactionStore(tx *btcutil.Tx, includeSpent bool) (TxStore, error) {
	// Create a set of needed transactions from the transactions referenced
	// by the inputs of the passed transaction.  Also, add the passed
	// transaction itself as a way for the caller to detect duplicates.
	txNeededSet := make(map[wire.ShaHash]struct{})
	txNeededSet[*tx.Sha()] = struct{}{}
	for _, txIn := range tx.MsgTx().TxIn {
		txNeededSet[txIn.PreviousOutPoint.Hash] = struct{}{}
	}

	// Request the input transactions from the point of view of the end of
	// the main chain with or without without including fully spent transactions
	// in the results.
	txStore := fetchTxStoreMain(b.db, txNeededSet, includeSpent)
	return txStore, nil
}
Пример #28
0
// fetchReferencedOutputScripts looks up and returns all the scriptPubKeys
// referenced by inputs of the passed transaction.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *txMemPool) fetchReferencedOutputScripts(tx *btcutil.Tx) ([][]byte, error) {
	txStore, err := mp.fetchInputTransactions(tx, false)
	if err != nil || len(txStore) == 0 {
		return nil, err
	}

	previousOutScripts := make([][]byte, 0, len(tx.MsgTx().TxIn))
	for _, txIn := range tx.MsgTx().TxIn {
		outPoint := txIn.PreviousOutPoint
		if txStore[outPoint.Hash].Err == nil {
			referencedOutPoint := txStore[outPoint.Hash].Tx.MsgTx().TxOut[outPoint.Index]
			previousOutScripts = append(previousOutScripts, referencedOutPoint.PkScript)
		}
	}
	return previousOutScripts, nil
}
Пример #29
0
// IsCoinBase determines whether or not a transaction is a coinbase.  A coinbase
// is a special transaction created by miners that has no inputs.  This is
// represented in the block chain by a transaction with a single input that has
// a previous output transaction index set to the maximum value along with a
// zero hash.
func IsCoinBase(tx *btcutil.Tx) bool {
	msgTx := tx.MsgTx()

	// A coin base must only have one transaction input.
	if len(msgTx.TxIn) != 1 {
		return false
	}

	// The previous output of a coin base must have a max value index and
	// a zero hash.
	prevOut := msgTx.TxIn[0].PreviousOutPoint
	if prevOut.Index != math.MaxUint32 || !prevOut.Hash.IsEqual(zeroHash) {
		return false
	}

	return true
}
Пример #30
0
// indexScriptByAddress alters our address index by indexing the payment address
// encoded by the passed scriptPubKey to the passed transaction.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) indexScriptAddressToTx(pkScript []byte, tx *btcutil.Tx) error {
	_, addresses, _, err := txscript.ExtractPkScriptAddrs(pkScript,
		activeNetParams.Params)
	if err != nil {
		txmpLog.Errorf("Unable to extract encoded addresses from script "+
			"for addrindex: %v", err)
		return err
	}

	for _, addr := range addresses {
		if mp.addrindex[addr.EncodeAddress()] == nil {
			mp.addrindex[addr.EncodeAddress()] = make(map[wire.ShaHash]struct{})
		}
		mp.addrindex[addr.EncodeAddress()][*tx.Sha()] = struct{}{}
	}

	return nil
}