// removeTransaction is the internal function which implements the public // RemoveTransaction. See the comment for RemoveTransaction for more details. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) removeTransaction(tx *btcutil.Tx, removeRedeemers bool) { txHash := tx.Sha() if removeRedeemers { // Remove any transactions which rely on this one. for i := uint32(0); i < uint32(len(tx.MsgTx().TxOut)); i++ { outpoint := wire.NewOutPoint(txHash, i) if txRedeemer, exists := mp.outpoints[*outpoint]; exists { mp.removeTransaction(txRedeemer, true) } } } // Remove the transaction and mark the referenced outpoints as unspent // by the pool. if txDesc, exists := mp.pool[*txHash]; exists { if mp.cfg.EnableAddrIndex { mp.removeTransactionFromAddrIndex(tx) } for _, txIn := range txDesc.Tx.MsgTx().TxIn { delete(mp.outpoints, txIn.PreviousOutPoint) } delete(mp.pool, *txHash) atomic.StoreInt64(&mp.lastUpdated, time.Now().Unix()) } }
// CountP2SHSigOps returns the number of signature operations for all input // transactions which are of the pay-to-script-hash type. This uses the // precise, signature operation counting mechanism from the script engine which // requires access to the input transaction scripts. func CountP2SHSigOps(tx *btcutil.Tx, isCoinBaseTx bool, txStore TxStore) (int, error) { // Coinbase transactions have no interesting inputs. if isCoinBaseTx { return 0, nil } // Accumulate the number of signature operations in all transaction // inputs. msgTx := tx.MsgTx() totalSigOps := 0 for _, txIn := range msgTx.TxIn { // Ensure the referenced input transaction is available. txInHash := &txIn.PreviousOutPoint.Hash originTx, exists := txStore[*txInHash] if !exists || originTx.Err != nil || originTx.Tx == nil { str := fmt.Sprintf("unable to find input transaction "+ "%v referenced from transaction %v", txInHash, tx.Sha()) return 0, ruleError(ErrMissingTx, str) } originMsgTx := originTx.Tx.MsgTx() // Ensure the output index in the referenced transaction is // available. originTxIndex := txIn.PreviousOutPoint.Index if originTxIndex >= uint32(len(originMsgTx.TxOut)) { str := fmt.Sprintf("out of bounds input index %d in "+ "transaction %v referenced from transaction %v", originTxIndex, txInHash, tx.Sha()) return 0, ruleError(ErrBadTxInput, str) } // We're only interested in pay-to-script-hash types, so skip // this input if it's not one. pkScript := originMsgTx.TxOut[originTxIndex].PkScript if !txscript.IsPayToScriptHash(pkScript) { continue } // Count the precise number of signature operations in the // referenced public key script. sigScript := txIn.SignatureScript numSigOps := txscript.GetPreciseSigOpCount(sigScript, pkScript, true) // We could potentially overflow the accumulator so check for // overflow. lastSigOps := totalSigOps totalSigOps += numSigOps if totalSigOps < lastSigOps { str := fmt.Sprintf("the public key script from "+ "output index %d in transaction %v contains "+ "too many signature operations - overflow", originTxIndex, txInHash) return 0, ruleError(ErrTooManySigOps, str) } } return totalSigOps, nil }
// removeTransaction is the internal function which implements the public // RemoveTransaction. See the comment for RemoveTransaction for more details. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) removeTransaction(tx *btcutil.Tx, removeRedeemers bool) { txHash := tx.Sha() if removeRedeemers { // Remove any transactions which rely on this one. for i := uint32(0); i < uint32(len(tx.MsgTx().TxOut)); i++ { outpoint := wire.NewOutPoint(txHash, i) if txRedeemer, exists := mp.outpoints[*outpoint]; exists { mp.removeTransaction(txRedeemer, true) } } } // Remove the transaction if needed. if txDesc, exists := mp.pool[*txHash]; exists { // Remove unconfirmed address index entries associated with the // transaction if enabled. if mp.cfg.AddrIndex != nil { mp.cfg.AddrIndex.RemoveUnconfirmedTx(txHash) } // Mark the referenced outpoints as unspent by the pool. for _, txIn := range txDesc.Tx.MsgTx().TxIn { delete(mp.outpoints, txIn.PreviousOutPoint) } delete(mp.pool, *txHash) atomic.StoreInt64(&mp.lastUpdated, time.Now().Unix()) } }
// removeTransaction is the internal function which implements the public // RemoveTransaction. See the comment for RemoveTransaction for more details. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) removeTransaction(tx *btcutil.Tx) { // Remove any transactions which rely on this one. txHash := tx.Sha() for i := uint32(0); i < uint32(len(tx.MsgTx().TxOut)); i++ { outpoint := wire.NewOutPoint(txHash, i) if txRedeemer, exists := mp.outpoints[*outpoint]; exists { mp.removeTransaction(txRedeemer) } } // Remove the transaction and mark the referenced outpoints as unspent // by the pool. if txDesc, exists := mp.pool[*txHash]; exists { if cfg.AddrIndex { mp.removeTransactionFromAddrIndex(tx) } for _, txIn := range txDesc.Tx.MsgTx().TxIn { delete(mp.outpoints, txIn.PreviousOutPoint) } delete(mp.pool, *txHash) mp.lastUpdated = time.Now() } }
// matchTxAndUpdate returns true if the bloom filter matches data within the // passed transaction, otherwise false is returned. If the filter does match // the passed transaction, it will also update the filter depending on the bloom // update flags set via the loaded filter if needed. // // This function MUST be called with the filter lock held. func (bf *Filter) matchTxAndUpdate(tx *btcutil.Tx) bool { // Check if the filter matches the hash of the transaction. // This is useful for finding transactions when they appear in a block. matched := bf.matches(tx.Sha()[:]) // Check if the filter matches any data elements in the public key // scripts of any of the outputs. When it does, add the outpoint that // matched so transactions which spend from the matched transaction are // also included in the filter. This removes the burden of updating the // filter for this scenario from the client. It is also more efficient // on the network since it avoids the need for another filteradd message // from the client and avoids some potential races that could otherwise // occur. for i, txOut := range tx.MsgTx().TxOut { pushedData, err := txscript.PushedData(txOut.PkScript) if err != nil { continue } for _, data := range pushedData { if !bf.matches(data) { continue } matched = true bf.maybeAddOutpoint(txOut.PkScript, tx.Sha(), uint32(i)) break } } // Nothing more to do if a match has already been made. if matched { return true } // At this point, the transaction and none of the data elements in the // public key scripts of its outputs matched. // Check if the filter matches any outpoints this transaction spends or // any any data elements in the signature scripts of any of the inputs. for _, txin := range tx.MsgTx().TxIn { if bf.matchesOutPoint(&txin.PreviousOutPoint) { return true } pushedData, err := txscript.PushedData(txin.SignatureScript) if err != nil { continue } for _, data := range pushedData { if bf.matches(data) { return true } } } return false }
// getUtxo returns a TxOut from Tx and Vout func (com *Communication) getUtxo(tx *btcutil.Tx, vout *wire.TxOut, index uint32) *TxOut { op := wire.NewOutPoint(tx.Sha(), index) unspent := TxOut{ OutPoint: op, Amount: btcutil.Amount(vout.Value), } return &unspent }
// logSkippedDeps logs any dependencies which are also skipped as a result of // skipping a transaction while generating a block template at the trace level. func logSkippedDeps(tx *btcutil.Tx, deps *list.List) { if deps == nil { return } for e := deps.Front(); e != nil; e = e.Next() { item := e.Value.(*txPrioItem) minrLog.Tracef("Skipping tx %s since it depends on %s\n", item.tx.Sha(), tx.Sha()) } }
// RemoveDoubleSpends removes all transactions which spend outputs spent by the // passed transaction from the memory pool. Removing those transactions then // leads to removing all transactions which rely on them, recursively. This is // necessary when a block is connected to the main chain because the block may // contain transactions which were previously unknown to the memory pool // // This function is safe for concurrent access. func (mp *txMemPool) RemoveDoubleSpends(tx *btcutil.Tx) { // Protect concurrent access. mp.Lock() defer mp.Unlock() for _, txIn := range tx.MsgTx().TxIn { if txRedeemer, ok := mp.outpoints[txIn.PreviousOutPoint]; ok { if !txRedeemer.Sha().IsEqual(tx.Sha()) { mp.removeTransaction(txRedeemer, true) } } } }
// removeScriptFromAddrIndex dissociates the address encoded by the // passed pkScript from the passed tx in our address based tx index. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) removeScriptFromAddrIndex(pkScript []byte, tx *btcutil.Tx) error { _, addresses, _, err := txscript.ExtractPkScriptAddrs(pkScript, activeNetParams.Params) if err != nil { txmpLog.Errorf("Unable to extract encoded addresses from script "+ "for addrindex (addrindex): %v", err) return err } for _, addr := range addresses { delete(mp.addrindex[addr.EncodeAddress()], *tx.Sha()) } return nil }
// CountP2SHSigOps returns the number of signature operations for all input // transactions which are of the pay-to-script-hash type. This uses the // precise, signature operation counting mechanism from the script engine which // requires access to the input transaction scripts. func CountP2SHSigOps(tx *btcutil.Tx, isCoinBaseTx bool, utxoView *UtxoViewpoint) (int, error) { // Coinbase transactions have no interesting inputs. if isCoinBaseTx { return 0, nil } // Accumulate the number of signature operations in all transaction // inputs. msgTx := tx.MsgTx() totalSigOps := 0 for txInIndex, txIn := range msgTx.TxIn { // Ensure the referenced input transaction is available. originTxHash := &txIn.PreviousOutPoint.Hash originTxIndex := txIn.PreviousOutPoint.Index txEntry := utxoView.LookupEntry(originTxHash) if txEntry == nil || txEntry.IsOutputSpent(originTxIndex) { str := fmt.Sprintf("unable to find unspent output "+ "%v referenced from transaction %s:%d", txIn.PreviousOutPoint, tx.Sha(), txInIndex) return 0, ruleError(ErrMissingTx, str) } // We're only interested in pay-to-script-hash types, so skip // this input if it's not one. pkScript := txEntry.PkScriptByIndex(originTxIndex) if !txscript.IsPayToScriptHash(pkScript) { continue } // Count the precise number of signature operations in the // referenced public key script. sigScript := txIn.SignatureScript numSigOps := txscript.GetPreciseSigOpCount(sigScript, pkScript, true) // We could potentially overflow the accumulator so check for // overflow. lastSigOps := totalSigOps totalSigOps += numSigOps if totalSigOps < lastSigOps { str := fmt.Sprintf("the public key script from output "+ "%v contains too many signature operations - "+ "overflow", txIn.PreviousOutPoint) return 0, ruleError(ErrTooManySigOps, str) } } return totalSigOps, nil }
// FetchTransactionStore fetches the input transactions referenced by the // passed transaction from the point of view of the end of the main chain. It // also attempts to fetch the transaction itself so the returned TxStore can be // examined for duplicate transactions. func (b *BlockChain) FetchTransactionStore(tx *btcutil.Tx, includeSpent bool) (TxStore, error) { // Create a set of needed transactions from the transactions referenced // by the inputs of the passed transaction. Also, add the passed // transaction itself as a way for the caller to detect duplicates. txNeededSet := make(map[wire.ShaHash]struct{}) txNeededSet[*tx.Sha()] = struct{}{} for _, txIn := range tx.MsgTx().TxIn { txNeededSet[txIn.PreviousOutPoint.Hash] = struct{}{} } // Request the input transactions from the point of view of the end of // the main chain with or without without including fully spent transactions // in the results. txStore := fetchTxStoreMain(b.db, txNeededSet, includeSpent) return txStore, nil }
// addOrphan adds an orphan transaction to the orphan pool. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) addOrphan(tx *btcutil.Tx) { // Limit the number orphan transactions to prevent memory exhaustion. A // random orphan is evicted to make room if needed. mp.limitNumOrphans() mp.orphans[*tx.Sha()] = tx for _, txIn := range tx.MsgTx().TxIn { originTxHash := txIn.PreviousOutPoint.Hash if mp.orphansByPrev[originTxHash] == nil { mp.orphansByPrev[originTxHash] = list.New() } mp.orphansByPrev[originTxHash].PushBack(tx) } txmpLog.Debugf("Stored orphan transaction %v (total: %d)", tx.Sha(), len(mp.orphans)) }
// addTransaction adds the passed transaction to the memory pool. It should // not be called directly as it doesn't perform any validation. This is a // helper for maybeAcceptTransaction. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) addTransaction(tx *btcutil.Tx, height int32, fee int64) { // Add the transaction to the pool and mark the referenced outpoints // as spent by the pool. mp.pool[*tx.Sha()] = &TxDesc{ Tx: tx, Added: time.Now(), Height: height, Fee: fee, } for _, txIn := range tx.MsgTx().TxIn { mp.outpoints[txIn.PreviousOutPoint] = tx } mp.lastUpdated = time.Now() if cfg.AddrIndex { mp.addTransactionToAddrIndex(tx) } }
// indexScriptByAddress alters our address index by indexing the payment address // encoded by the passed scriptPubKey to the passed transaction. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) indexScriptAddressToTx(pkScript []byte, tx *btcutil.Tx) error { _, addresses, _, err := txscript.ExtractPkScriptAddrs(pkScript, activeNetParams.Params) if err != nil { txmpLog.Errorf("Unable to extract encoded addresses from script "+ "for addrindex: %v", err) return err } for _, addr := range addresses { if mp.addrindex[addr.EncodeAddress()] == nil { mp.addrindex[addr.EncodeAddress()] = make(map[wire.ShaHash]struct{}) } mp.addrindex[addr.EncodeAddress()][*tx.Sha()] = struct{}{} } return nil }
// ProcessTransaction is the main workhorse for handling insertion of new // free-standing transactions into the memory pool. It includes functionality // such as rejecting duplicate transactions, ensuring transactions follow all // rules, orphan transaction handling, and insertion into the memory pool. // // This function is safe for concurrent access. func (mp *txMemPool) ProcessTransaction(tx *btcutil.Tx, allowOrphan, rateLimit bool) error { // Protect concurrent access. mp.Lock() defer mp.Unlock() txmpLog.Tracef("Processing transaction %v", tx.Sha()) // Potentially accept the transaction to the memory pool. missingParents, err := mp.maybeAcceptTransaction(tx, true, rateLimit) if err != nil { return err } if len(missingParents) == 0 { // Generate the inventory vector and relay it. iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha()) mp.server.RelayInventory(iv, tx) // Accept any orphan transactions that depend on this // transaction (they may no longer be orphans if all inputs // are now available) and repeat for those accepted // transactions until there are no more. err := mp.processOrphans(tx.Sha()) if err != nil { return err } } else { // The transaction is an orphan (has inputs missing). Reject // it if the flag to allow orphans is not set. if !allowOrphan { // Only use the first missing parent transaction in // the error message. // // NOTE: RejectDuplicate is really not an accurate // reject code here, but it matches the reference // implementation and there isn't a better choice due // to the limited number of reject codes. Missing // inputs is assumed to mean they are already spent // which is not really always the case. str := fmt.Sprintf("orphan transaction %v references "+ "outputs of unknown or fully-spent "+ "transaction %v", tx.Sha(), missingParents[0]) return txRuleError(wire.RejectDuplicate, str) } // Potentially add the orphan transaction to the orphan pool. err := mp.maybeAddOrphan(tx) if err != nil { return err } } return nil }
// AddTxOuts adds all outputs in the passed transaction which are not provably // unspendable to the view. When the view already has entries for any of the // outputs, they are simply marked unspent. All fields will be updated for // existing entries since it's possible it has changed during a reorg. func (view *UtxoViewpoint) AddTxOuts(tx *btcutil.Tx, blockHeight int32) { // When there are not already any utxos associated with the transaction, // add a new entry for it to the view. entry := view.LookupEntry(tx.Sha()) if entry == nil { entry = newUtxoEntry(tx.MsgTx().Version, IsCoinBase(tx), blockHeight) view.entries[*tx.Sha()] = entry } else { entry.blockHeight = blockHeight } entry.modified = true // Loop all of the transaction outputs and add those which are not // provably unspendable. for txOutIdx, txOut := range tx.MsgTx().TxOut { if txscript.IsUnspendable(txOut.PkScript) { continue } // Update existing entries. All fields are updated because it's // possible (although extremely unlikely) that the existing // entry is being replaced by a different transaction with the // same hash. This is allowed so long as the previous // transaction is fully spent. if output, ok := entry.sparseOutputs[uint32(txOutIdx)]; ok { output.spent = false output.compressed = false output.amount = txOut.Value output.pkScript = txOut.PkScript continue } // Add the unspent transaction output. entry.sparseOutputs[uint32(txOutIdx)] = &utxoOutput{ spent: false, compressed: false, amount: txOut.Value, pkScript: txOut.PkScript, } } return }
// spendTransaction updates the passed transaction store by marking the inputs // to the passed transaction as spent. It also adds the passed transaction to // the store at the provided height. func spendTransaction(txStore blockchain.TxStore, tx *btcutil.Tx, height int32) error { for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index if originTx, exists := txStore[*originHash]; exists { originTx.Spent[originIndex] = true } } txStore[*tx.Sha()] = &blockchain.TxData{ Tx: tx, Hash: tx.Sha(), BlockHeight: height, Spent: make([]bool, len(tx.MsgTx().TxOut)), Err: nil, } return nil }
// addTransaction adds the passed transaction to the memory pool. It should // not be called directly as it doesn't perform any validation. This is a // helper for maybeAcceptTransaction. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) addTransaction(txStore blockchain.TxStore, tx *btcutil.Tx, height int32, fee int64) { // Add the transaction to the pool and mark the referenced outpoints // as spent by the pool. mp.pool[*tx.Sha()] = &mempoolTxDesc{ TxDesc: mining.TxDesc{ Tx: tx, Added: time.Now(), Height: height, Fee: fee, }, StartingPriority: calcPriority(tx.MsgTx(), txStore, height), } for _, txIn := range tx.MsgTx().TxIn { mp.outpoints[txIn.PreviousOutPoint] = tx } atomic.StoreInt64(&mp.lastUpdated, time.Now().Unix()) if mp.cfg.EnableAddrIndex { mp.addTransactionToAddrIndex(tx) } }
// indexUnconfirmedAddresses modifies the unconfirmed (memory-only) address // index to include mappings for the addresses encoded by the passed public key // script to the transaction. // // This function is safe for concurrent access. func (idx *AddrIndex) indexUnconfirmedAddresses(pkScript []byte, tx *btcutil.Tx) { // The error is ignored here since the only reason it can fail is if the // script fails to parse and it was already validated before being // admitted to the mempool. _, addresses, _, _ := txscript.ExtractPkScriptAddrs(pkScript, idx.chainParams) for _, addr := range addresses { // Ignore unsupported address types. addrKey, err := addrToKey(addr) if err != nil { continue } // Add a mapping from the address to the transaction. idx.unconfirmedLock.Lock() addrIndexEntry := idx.txnsByAddr[addrKey] if addrIndexEntry == nil { addrIndexEntry = make(map[wire.ShaHash]*btcutil.Tx) idx.txnsByAddr[addrKey] = addrIndexEntry } addrIndexEntry[*tx.Sha()] = tx // Add a mapping from the transaction to the address. addrsByTxEntry := idx.addrsByTx[*tx.Sha()] if addrsByTxEntry == nil { addrsByTxEntry = make(map[[addrKeySize]byte]struct{}) idx.addrsByTx[*tx.Sha()] = addrsByTxEntry } addrsByTxEntry[addrKey] = struct{}{} idx.unconfirmedLock.Unlock() } }
// FetchUtxoView loads utxo details about the input transactions referenced by // the passed transaction from the point of view of the end of the main chain. // It also attempts to fetch the utxo details for the transaction itself so the // returned view can be examined for duplicate unspent transaction outputs. // // This function is safe for concurrent access however the returned view is NOT. func (b *BlockChain) FetchUtxoView(tx *btcutil.Tx) (*UtxoViewpoint, error) { b.chainLock.RLock() defer b.chainLock.RUnlock() // Create a set of needed transactions based on those referenced by the // inputs of the passed transaction. Also, add the passed transaction // itself as a way for the caller to detect duplicates that are not // fully spent. txNeededSet := make(map[wire.ShaHash]struct{}) txNeededSet[*tx.Sha()] = struct{}{} if !IsCoinBase(tx) { for _, txIn := range tx.MsgTx().TxIn { txNeededSet[txIn.PreviousOutPoint.Hash] = struct{}{} } } // Request the utxos from the point of view of the end of the main // chain. view := NewUtxoViewpoint() err := view.fetchUtxosMain(b.db, txNeededSet) return view, err }
// addTransaction adds the passed transaction to the memory pool. It should // not be called directly as it doesn't perform any validation. This is a // helper for maybeAcceptTransaction. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) addTransaction(utxoView *blockchain.UtxoViewpoint, tx *btcutil.Tx, height int32, fee int64) { // Add the transaction to the pool and mark the referenced outpoints // as spent by the pool. mp.pool[*tx.Sha()] = &mempoolTxDesc{ TxDesc: mining.TxDesc{ Tx: tx, Added: time.Now(), Height: height, Fee: fee, }, StartingPriority: calcPriority(tx.MsgTx(), utxoView, height), } for _, txIn := range tx.MsgTx().TxIn { mp.outpoints[txIn.PreviousOutPoint] = tx } atomic.StoreInt64(&mp.lastUpdated, time.Now().Unix()) // Add unconfirmed address index entries associated with the transaction // if enabled. if mp.cfg.AddrIndex != nil { mp.cfg.AddrIndex.AddUnconfirmedTx(tx, utxoView) } }
// Process a transaction that comes off the wire. A transaction could be passed in here for three reasons: // 1. It's a new transaction fresh off the wire. // 2. It's our own outgoing transaction. // 3. It's a transaction whose state has updated (ie. recently confirmed) // In cases 1 and 2 we add the transaction to the database and update our utxo table. // In the last case we just update the height and/or state of the transaction. func (w *LibbitcoinWallet) ProcessTransaction(tx *btc.Tx, height uint32) { txid, err := hex.DecodeString(tx.Sha().String()) if err != nil { return } value := 0 if !w.db.Transactions().Has(txid) { // If output sends coins to one of our scripts, save it in the utxo db and mark the key as used. for i, output := range tx.MsgTx().TxOut { key, err := w.db.Keys().GetKeyForScript(output.PkScript) if err == nil { w.db.Coins().Put(bitcoin.Utxo{ Txid: txid, Index: i, Value: int(output.Value), ScriptPubKey: output.PkScript, }) w.db.Keys().MarkKeyAsUsed(key) value += int(output.Value) } } // If input exists in utxo db, delete it for _, input := range tx.MsgTx().TxIn { outpointTxid, err := hex.DecodeString(input.PreviousOutPoint.Hash.String()) if err != nil { return } if w.db.Coins().Has(outpointTxid, int(input.PreviousOutPoint.Index)) { v, err := w.db.Coins().GetValue(outpointTxid, int(input.PreviousOutPoint.Index)) if err != nil { return } value -= v w.db.Coins().Delete(outpointTxid, int(input.PreviousOutPoint.Index)) } } // Put to database serializedTx := new(bytes.Buffer) tx.MsgTx().Serialize(serializedTx) var state bitcoin.TransactionState if height > 0 { state = bitcoin.CONFIRMED } else { state = bitcoin.PENDING } w.db.Transactions().Put(bitcoin.TransactionInfo{ Txid: txid, Tx: serializedTx.Bytes(), Height: int(height), State: state, Timestamp: time.Now(), Value: value, ExchangeRate: float64(0), ExchangCurrency: "", }) } else { if height > 0 { w.db.Transactions().UpdateState(txid, bitcoin.CONFIRMED) } else { w.db.Transactions().UpdateState(txid, bitcoin.PENDING) } w.db.Transactions().UpdateHeight(txid, int(height)) } }
// CheckTransactionInputs performs a series of checks on the inputs to a // transaction to ensure they are valid. An example of some of the checks // include verifying all inputs exist, ensuring the coinbase seasoning // requirements are met, detecting double spends, validating all values and fees // are in the legal range and the total output amount doesn't exceed the input // amount, and verifying the signatures to prove the spender was the owner of // the bitcoins and therefore allowed to spend them. As it checks the inputs, // it also calculates the total fees for the transaction and returns that value. func CheckTransactionInputs(tx *btcutil.Tx, txHeight int32, txStore TxStore) (int64, error) { // Coinbase transactions have no inputs. if IsCoinBase(tx) { return 0, nil } txHash := tx.Sha() var totalSatoshiIn int64 for _, txIn := range tx.MsgTx().TxIn { // Ensure the input is available. txInHash := &txIn.PreviousOutPoint.Hash originTx, exists := txStore[*txInHash] if !exists || originTx.Err != nil || originTx.Tx == nil { str := fmt.Sprintf("unable to find input transaction "+ "%v for transaction %v", txInHash, txHash) return 0, ruleError(ErrMissingTx, str) } // Ensure the transaction is not spending coins which have not // yet reached the required coinbase maturity. if IsCoinBase(originTx.Tx) { originHeight := originTx.BlockHeight blocksSincePrev := txHeight - originHeight if blocksSincePrev < coinbaseMaturity { str := fmt.Sprintf("tried to spend coinbase "+ "transaction %v from height %v at "+ "height %v before required maturity "+ "of %v blocks", txInHash, originHeight, txHeight, coinbaseMaturity) return 0, ruleError(ErrImmatureSpend, str) } } // Ensure the transaction is not double spending coins. originTxIndex := txIn.PreviousOutPoint.Index if originTxIndex >= uint32(len(originTx.Spent)) { str := fmt.Sprintf("out of bounds input index %d in "+ "transaction %v referenced from transaction %v", originTxIndex, txInHash, txHash) return 0, ruleError(ErrBadTxInput, str) } if originTx.Spent[originTxIndex] { str := fmt.Sprintf("transaction %v tried to double "+ "spend output %v", txHash, txIn.PreviousOutPoint) return 0, ruleError(ErrDoubleSpend, str) } // Ensure the transaction amounts are in range. Each of the // output values of the input transactions must not be negative // or more than the max allowed per transaction. All amounts in // a transaction are in a unit value known as a satoshi. One // bitcoin is a quantity of satoshi as defined by the // SatoshiPerBitcoin constant. originTxSatoshi := originTx.Tx.MsgTx().TxOut[originTxIndex].Value if originTxSatoshi < 0 { str := fmt.Sprintf("transaction output has negative "+ "value of %v", originTxSatoshi) return 0, ruleError(ErrBadTxOutValue, str) } if originTxSatoshi > btcutil.MaxSatoshi { str := fmt.Sprintf("transaction output value of %v is "+ "higher than max allowed value of %v", originTxSatoshi, btcutil.MaxSatoshi) return 0, ruleError(ErrBadTxOutValue, str) } // The total of all outputs must not be more than the max // allowed per transaction. Also, we could potentially overflow // the accumulator so check for overflow. lastSatoshiIn := totalSatoshiIn totalSatoshiIn += originTxSatoshi if totalSatoshiIn < lastSatoshiIn || totalSatoshiIn > btcutil.MaxSatoshi { str := fmt.Sprintf("total value of all transaction "+ "inputs is %v which is higher than max "+ "allowed value of %v", totalSatoshiIn, btcutil.MaxSatoshi) return 0, ruleError(ErrBadTxOutValue, str) } // Mark the referenced output as spent. originTx.Spent[originTxIndex] = true } // Calculate the total output amount for this transaction. It is safe // to ignore overflow and out of range errors here because those error // conditions would have already been caught by checkTransactionSanity. var totalSatoshiOut int64 for _, txOut := range tx.MsgTx().TxOut { totalSatoshiOut += txOut.Value } // Ensure the transaction does not spend more than its inputs. if totalSatoshiIn < totalSatoshiOut { str := fmt.Sprintf("total value of all transaction inputs for "+ "transaction %v is %v which is less than the amount "+ "spent of %v", txHash, totalSatoshiIn, totalSatoshiOut) return 0, ruleError(ErrSpendTooHigh, str) } // NOTE: bitcoind checks if the transaction fees are < 0 here, but that // is an impossible condition because of the check above that ensures // the inputs are >= the outputs. txFeeInSatoshi := totalSatoshiIn - totalSatoshiOut return txFeeInSatoshi, nil }
// maybeAcceptTransaction is the internal function which implements the public // MaybeAcceptTransaction. See the comment for MaybeAcceptTransaction for // more details. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) maybeAcceptTransaction(tx *btcutil.Tx, isNew, rateLimit bool) ([]*wire.ShaHash, error) { txHash := tx.Sha() // Don't accept the transaction if it already exists in the pool. This // applies to orphan transactions as well. This check is intended to // be a quick check to weed out duplicates. if mp.haveTransaction(txHash) { str := fmt.Sprintf("already have transaction %v", txHash) return nil, txRuleError(wire.RejectDuplicate, str) } // Perform preliminary sanity checks on the transaction. This makes // use of btcchain which contains the invariant rules for what // transactions are allowed into blocks. err := blockchain.CheckTransactionSanity(tx) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, chainRuleError(cerr) } return nil, err } // A standalone transaction must not be a coinbase transaction. if blockchain.IsCoinBase(tx) { str := fmt.Sprintf("transaction %v is an individual coinbase", txHash) return nil, txRuleError(wire.RejectInvalid, str) } // Don't accept transactions with a lock time after the maximum int32 // value for now. This is an artifact of older bitcoind clients which // treated this field as an int32 and would treat anything larger // incorrectly (as negative). if tx.MsgTx().LockTime > math.MaxInt32 { str := fmt.Sprintf("transaction %v has a lock time after "+ "2038 which is not accepted yet", txHash) return nil, txRuleError(wire.RejectNonstandard, str) } // Get the current height of the main chain. A standalone transaction // will be mined into the next block at best, so it's height is at least // one more than the current height. _, curHeight, err := mp.cfg.NewestSha() if err != nil { // This is an unexpected error so don't turn it into a rule // error. return nil, err } nextBlockHeight := curHeight + 1 // Don't allow non-standard transactions if the network parameters // forbid their relaying. if !activeNetParams.RelayNonStdTxs { err := checkTransactionStandard(tx, nextBlockHeight, mp.cfg.TimeSource, mp.cfg.MinRelayTxFee) if err != nil { // Attempt to extract a reject code from the error so // it can be retained. When not possible, fall back to // a non standard error. rejectCode, found := extractRejectCode(err) if !found { rejectCode = wire.RejectNonstandard } str := fmt.Sprintf("transaction %v is not standard: %v", txHash, err) return nil, txRuleError(rejectCode, str) } } // The transaction may not use any of the same outputs as other // transactions already in the pool as that would ultimately result in a // double spend. This check is intended to be quick and therefore only // detects double spends within the transaction pool itself. The // transaction could still be double spending coins from the main chain // at this point. There is a more in-depth check that happens later // after fetching the referenced transaction inputs from the main chain // which examines the actual spend data and prevents double spends. err = mp.checkPoolDoubleSpend(tx) if err != nil { return nil, err } // Fetch all of the transactions referenced by the inputs to this // transaction. This function also attempts to fetch the transaction // itself to be used for detecting a duplicate transaction without // needing to do a separate lookup. txStore, err := mp.fetchInputTransactions(tx, false) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, chainRuleError(cerr) } return nil, err } // Don't allow the transaction if it exists in the main chain and is not // not already fully spent. if txD, exists := txStore[*txHash]; exists && txD.Err == nil { for _, isOutputSpent := range txD.Spent { if !isOutputSpent { return nil, txRuleError(wire.RejectDuplicate, "transaction already exists") } } } delete(txStore, *txHash) // Transaction is an orphan if any of the referenced input transactions // don't exist. Adding orphans to the orphan pool is not handled by // this function, and the caller should use maybeAddOrphan if this // behavior is desired. var missingParents []*wire.ShaHash for _, txD := range txStore { if txD.Err == database.ErrTxShaMissing { missingParents = append(missingParents, txD.Hash) } } if len(missingParents) > 0 { return missingParents, nil } // Perform several checks on the transaction inputs using the invariant // rules in btcchain for what transactions are allowed into blocks. // Also returns the fees associated with the transaction which will be // used later. txFee, err := blockchain.CheckTransactionInputs(tx, nextBlockHeight, txStore) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, chainRuleError(cerr) } return nil, err } // Don't allow transactions with non-standard inputs if the network // parameters forbid their relaying. if !activeNetParams.RelayNonStdTxs { err := checkInputsStandard(tx, txStore) if err != nil { // Attempt to extract a reject code from the error so // it can be retained. When not possible, fall back to // a non standard error. rejectCode, found := extractRejectCode(err) if !found { rejectCode = wire.RejectNonstandard } str := fmt.Sprintf("transaction %v has a non-standard "+ "input: %v", txHash, err) return nil, txRuleError(rejectCode, str) } } // NOTE: if you modify this code to accept non-standard transactions, // you should add code here to check that the transaction does a // reasonable number of ECDSA signature verifications. // Don't allow transactions with an excessive number of signature // operations which would result in making it impossible to mine. Since // the coinbase address itself can contain signature operations, the // maximum allowed signature operations per transaction is less than // the maximum allowed signature operations per block. numSigOps, err := blockchain.CountP2SHSigOps(tx, false, txStore) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, chainRuleError(cerr) } return nil, err } numSigOps += blockchain.CountSigOps(tx) if numSigOps > maxSigOpsPerTx { str := fmt.Sprintf("transaction %v has too many sigops: %d > %d", txHash, numSigOps, maxSigOpsPerTx) return nil, txRuleError(wire.RejectNonstandard, str) } // Don't allow transactions with fees too low to get into a mined block. // // Most miners allow a free transaction area in blocks they mine to go // alongside the area used for high-priority transactions as well as // transactions with fees. A transaction size of up to 1000 bytes is // considered safe to go into this section. Further, the minimum fee // calculated below on its own would encourage several small // transactions to avoid fees rather than one single larger transaction // which is more desirable. Therefore, as long as the size of the // transaction does not exceeed 1000 less than the reserved space for // high-priority transactions, don't require a fee for it. serializedSize := int64(tx.MsgTx().SerializeSize()) minFee := calcMinRequiredTxRelayFee(serializedSize, mp.cfg.MinRelayTxFee) if serializedSize >= (defaultBlockPrioritySize-1000) && txFee < minFee { str := fmt.Sprintf("transaction %v has %d fees which is under "+ "the required amount of %d", txHash, txFee, minFee) return nil, txRuleError(wire.RejectInsufficientFee, str) } // Require that free transactions have sufficient priority to be mined // in the next block. Transactions which are being added back to the // memory pool from blocks that have been disconnected during a reorg // are exempted. if isNew && !mp.cfg.DisableRelayPriority && txFee < minFee { currentPriority := calcPriority(tx.MsgTx(), txStore, nextBlockHeight) if currentPriority <= minHighPriority { str := fmt.Sprintf("transaction %v has insufficient "+ "priority (%g <= %g)", txHash, currentPriority, minHighPriority) return nil, txRuleError(wire.RejectInsufficientFee, str) } } // Free-to-relay transactions are rate limited here to prevent // penny-flooding with tiny transactions as a form of attack. if rateLimit && txFee < minFee { nowUnix := time.Now().Unix() // we decay passed data with an exponentially decaying ~10 // minutes window - matches bitcoind handling. mp.pennyTotal *= math.Pow(1.0-1.0/600.0, float64(nowUnix-mp.lastPennyUnix)) mp.lastPennyUnix = nowUnix // Are we still over the limit? if mp.pennyTotal >= mp.cfg.FreeTxRelayLimit*10*1000 { str := fmt.Sprintf("transaction %v has been rejected "+ "by the rate limiter due to low fees", txHash) return nil, txRuleError(wire.RejectInsufficientFee, str) } oldTotal := mp.pennyTotal mp.pennyTotal += float64(serializedSize) txmpLog.Tracef("rate limit: curTotal %v, nextTotal: %v, "+ "limit %v", oldTotal, mp.pennyTotal, mp.cfg.FreeTxRelayLimit*10*1000) } // Verify crypto signatures for each input and reject the transaction if // any don't verify. err = blockchain.ValidateTransactionScripts(tx, txStore, txscript.StandardVerifyFlags, mp.cfg.SigCache) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, chainRuleError(cerr) } return nil, err } // Add to transaction pool. mp.addTransaction(txStore, tx, curHeight, txFee) txmpLog.Debugf("Accepted transaction %v (pool size: %v)", txHash, len(mp.pool)) return nil, nil }