func addpltsym(ctxt *ld.Link, s *ld.Symbol) { if s.Plt >= 0 { return } ld.Adddynsym(ctxt, s) if ld.Iself { plt := ld.Linklookup(ctxt, ".plt", 0) got := ld.Linklookup(ctxt, ".got.plt", 0) rel := ld.Linklookup(ctxt, ".rel.plt", 0) if plt.Size == 0 { elfsetupplt(ctxt) } // jmpq *got+size ld.Adduint8(ctxt, plt, 0xff) ld.Adduint8(ctxt, plt, 0x25) ld.Addaddrplus(ctxt, plt, got, got.Size) // add to got: pointer to current pos in plt ld.Addaddrplus(ctxt, got, plt, plt.Size) // pushl $x ld.Adduint8(ctxt, plt, 0x68) ld.Adduint32(ctxt, plt, uint32(rel.Size)) // jmp .plt ld.Adduint8(ctxt, plt, 0xe9) ld.Adduint32(ctxt, plt, uint32(-(plt.Size + 4))) // rel ld.Addaddrplus(ctxt, rel, got, got.Size-4) ld.Adduint32(ctxt, rel, ld.ELF32_R_INFO(uint32(s.Dynid), ld.R_386_JMP_SLOT)) s.Plt = int32(plt.Size - 16) } else if ld.HEADTYPE == obj.Hdarwin { // Same laziness as in 6l. plt := ld.Linklookup(ctxt, ".plt", 0) addgotsym(ctxt, s) ld.Adduint32(ctxt, ld.Linklookup(ctxt, ".linkedit.plt", 0), uint32(s.Dynid)) // jmpq *got+size(IP) s.Plt = int32(plt.Size) ld.Adduint8(ctxt, plt, 0xff) ld.Adduint8(ctxt, plt, 0x25) ld.Addaddrplus(ctxt, plt, ld.Linklookup(ctxt, ".got", 0), int64(s.Got)) } else { ctxt.Diag("addpltsym: unsupported binary format") } }
// Append 4 bytes to s and create a R_CALL relocation targeting t to fill them in. func addcall(ctxt *ld.Link, s *ld.Symbol, t *ld.Symbol) { s.Attr |= ld.AttrReachable i := s.Size s.Size += 4 ld.Symgrow(ctxt, s, s.Size) r := ld.Addrel(s) r.Sym = t r.Off = int32(i) r.Type = obj.R_CALL r.Siz = 4 }
func Addcall(ctxt *ld.Link, s *ld.Symbol, t *ld.Symbol) int64 { s.Attr |= ld.AttrReachable i := s.Size s.Size += 4 ld.Symgrow(s, s.Size) r := ld.Addrel(s) r.Sym = t r.Off = int32(i) r.Type = obj.R_CALL r.Siz = 4 return i + int64(r.Siz) }
func addpltreloc(ctxt *ld.Link, plt *ld.Symbol, got *ld.Symbol, sym *ld.Symbol, typ int) *ld.Reloc { r := ld.Addrel(plt) r.Sym = got r.Off = int32(plt.Size) r.Siz = 4 r.Type = int32(typ) r.Add = int64(sym.Got) - 8 plt.Attr |= ld.AttrReachable plt.Size += 4 ld.Symgrow(ctxt, plt, plt.Size) return r }
// Convert the direct jump relocation r to refer to a trampoline if the target is too far func trampoline(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol) { switch r.Type { case obj.R_CALLARM: // r.Add is the instruction // low 24-bit encodes the target address t := (ld.Symaddr(r.Sym) + int64(signext24(r.Add&0xffffff)*4) - (s.Value + int64(r.Off))) / 4 if t > 0x7fffff || t < -0x800000 || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) { // direct call too far, need to insert trampoline offset := (signext24(r.Add&0xffffff) + 2) * 4 var tramp *ld.Symbol for i := 0; ; i++ { name := r.Sym.Name + fmt.Sprintf("%+d-tramp%d", offset, i) tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version)) if tramp.Value == 0 { // either the trampoline does not exist -- we need to create one, // or found one the address which is not assigned -- this will be // laid down immediately after the current function. use this one. break } t = (ld.Symaddr(tramp) - 8 - (s.Value + int64(r.Off))) / 4 if t >= -0x800000 && t < 0x7fffff { // found an existing trampoline that is not too far // we can just use it break } } if tramp.Type == 0 { // trampoline does not exist, create one ctxt.AddTramp(tramp) tramp.Size = 12 // 3 instructions tramp.P = make([]byte, tramp.Size) t = ld.Symaddr(r.Sym) + int64(offset) o1 := uint32(0xe5900000 | 11<<12 | 15<<16) // MOVW (R15), R11 // R15 is actual pc + 8 o2 := uint32(0xe12fff10 | 11) // JMP (R11) o3 := uint32(t) // WORD $target ld.SysArch.ByteOrder.PutUint32(tramp.P, o1) ld.SysArch.ByteOrder.PutUint32(tramp.P[4:], o2) ld.SysArch.ByteOrder.PutUint32(tramp.P[8:], o3) } // modify reloc to point to tramp, which will be resolved later r.Sym = tramp r.Add = r.Add&0xff000000 | 0xfffffe // clear the offset embedded in the instruction r.Done = 0 } default: ld.Errorf(s, "trampoline called with non-jump reloc: %v", r.Type) } }
// generate a trampoline to target+offset in position independent code func gentramppic(tramp, target *ld.Symbol, offset int64) { tramp.Size = 16 // 4 instructions tramp.P = make([]byte, tramp.Size) o1 := uint32(0xe5900000 | 11<<12 | 15<<16 | 4) // MOVW 4(R15), R11 // R15 is actual pc + 8 o2 := uint32(0xe0800000 | 11<<12 | 15<<16 | 11) // ADD R15, R11, R11 o3 := uint32(0xe12fff10 | 11) // JMP (R11) o4 := uint32(0) // WORD $(target-pc) // filled in with relocation ld.SysArch.ByteOrder.PutUint32(tramp.P, o1) ld.SysArch.ByteOrder.PutUint32(tramp.P[4:], o2) ld.SysArch.ByteOrder.PutUint32(tramp.P[8:], o3) ld.SysArch.ByteOrder.PutUint32(tramp.P[12:], o4) r := ld.Addrel(tramp) r.Off = 12 r.Type = obj.R_PCREL r.Siz = 4 r.Sym = target r.Add = offset + 4 }
// generate a trampoline to target+offset func gentramp(tramp, target *ld.Symbol, offset int64) { tramp.Size = 12 // 3 instructions tramp.P = make([]byte, tramp.Size) t := ld.Symaddr(target) + int64(offset) o1 := uint32(0xe5900000 | 11<<12 | 15<<16) // MOVW (R15), R11 // R15 is actual pc + 8 o2 := uint32(0xe12fff10 | 11) // JMP (R11) o3 := uint32(t) // WORD $target ld.SysArch.ByteOrder.PutUint32(tramp.P, o1) ld.SysArch.ByteOrder.PutUint32(tramp.P[4:], o2) ld.SysArch.ByteOrder.PutUint32(tramp.P[8:], o3) if ld.Linkmode == ld.LinkExternal { r := ld.Addrel(tramp) r.Off = 8 r.Type = obj.R_ADDR r.Siz = 4 r.Sym = target r.Add = offset } }
func addpltsym(ctxt *ld.Link, s *ld.Symbol) { if s.Plt >= 0 { return } ld.Adddynsym(ctxt, s) if ld.Iself { plt := ld.Linklookup(ctxt, ".plt", 0) got := ld.Linklookup(ctxt, ".got.plt", 0) rel := ld.Linklookup(ctxt, ".rel.plt", 0) if plt.Size == 0 { elfsetupplt(ctxt) } // .got entry s.Got = int32(got.Size) // In theory, all GOT should point to the first PLT entry, // Linux/ARM's dynamic linker will do that for us, but FreeBSD/ARM's // dynamic linker won't, so we'd better do it ourselves. ld.Addaddrplus(ctxt, got, plt, 0) // .plt entry, this depends on the .got entry s.Plt = int32(plt.Size) addpltreloc(ctxt, plt, got, s, obj.R_PLT0) // add lr, pc, #0xXX00000 addpltreloc(ctxt, plt, got, s, obj.R_PLT1) // add lr, lr, #0xYY000 addpltreloc(ctxt, plt, got, s, obj.R_PLT2) // ldr pc, [lr, #0xZZZ]! // rel ld.Addaddrplus(ctxt, rel, got, int64(s.Got)) ld.Adduint32(ctxt, rel, ld.ELF32_R_INFO(uint32(s.Dynid), ld.R_ARM_JUMP_SLOT)) } else { ctxt.Diag("addpltsym: unsupported binary format") } }
// generate a trampoline to target+offset in dynlink mode (using GOT) func gentrampdyn(tramp, target *ld.Symbol, offset int64) { tramp.Size = 20 // 5 instructions o1 := uint32(0xe5900000 | 11<<12 | 15<<16 | 8) // MOVW 8(R15), R11 // R15 is actual pc + 8 o2 := uint32(0xe0800000 | 11<<12 | 15<<16 | 11) // ADD R15, R11, R11 o3 := uint32(0xe5900000 | 11<<12 | 11<<16) // MOVW (R11), R11 o4 := uint32(0xe12fff10 | 11) // JMP (R11) o5 := uint32(0) // WORD $target@GOT // filled in with relocation o6 := uint32(0) if offset != 0 { // insert an instruction to add offset tramp.Size = 24 // 6 instructions o6 = o5 o5 = o4 o4 = uint32(0xe2800000 | 11<<12 | 11<<16 | immrot(uint32(offset))) // ADD $offset, R11, R11 o1 = uint32(0xe5900000 | 11<<12 | 15<<16 | 12) // MOVW 12(R15), R11 } tramp.P = make([]byte, tramp.Size) ld.SysArch.ByteOrder.PutUint32(tramp.P, o1) ld.SysArch.ByteOrder.PutUint32(tramp.P[4:], o2) ld.SysArch.ByteOrder.PutUint32(tramp.P[8:], o3) ld.SysArch.ByteOrder.PutUint32(tramp.P[12:], o4) ld.SysArch.ByteOrder.PutUint32(tramp.P[16:], o5) if offset != 0 { ld.SysArch.ByteOrder.PutUint32(tramp.P[20:], o6) } r := ld.Addrel(tramp) r.Off = 16 r.Type = obj.R_GOTPCREL r.Siz = 4 r.Sym = target r.Add = 8 if offset != 0 { // increase reloc offset by 4 as we inserted an ADD instruction r.Off = 20 r.Add = 12 } }
func addgotsyminternal(ctxt *ld.Link, s *ld.Symbol) { if s.Got >= 0 { return } got := ld.Linklookup(ctxt, ".got", 0) s.Got = int32(got.Size) ld.Addaddrplus(ctxt, got, s, 0) if ld.Iself { } else { ctxt.Diag("addgotsyminternal: unsupported binary format") } }
func addgotsym(ctxt *ld.Link, s *ld.Symbol) { if s.Got >= 0 { return } ld.Adddynsym(ctxt, s) got := ld.Linklookup(ctxt, ".got", 0) s.Got = int32(got.Size) ld.Adduint32(ctxt, got, 0) if ld.Iself { rel := ld.Linklookup(ctxt, ".rel", 0) ld.Addaddrplus(ctxt, rel, got, int64(s.Got)) ld.Adduint32(ctxt, rel, ld.ELF32_R_INFO(uint32(s.Dynid), ld.R_ARM_GLOB_DAT)) } else { ctxt.Diag("addgotsym: unsupported binary format") } }
func addpltsym(ctxt *ld.Link, s *ld.Symbol) { if s.Plt >= 0 { return } ld.Adddynsym(ctxt, s) if ld.Iself { plt := ld.Linklookup(ctxt, ".plt", 0) rela := ld.Linklookup(ctxt, ".rela.plt", 0) if plt.Size == 0 { elfsetupplt() } // Create the glink resolver if necessary glink := ensureglinkresolver() // Write symbol resolver stub (just a branch to the // glink resolver stub) r := ld.Addrel(glink) r.Sym = glink r.Off = int32(glink.Size) r.Siz = 4 r.Type = obj.R_CALLPOWER ld.Adduint32(ctxt, glink, 0x48000000) // b .glink // In the ppc64 ABI, the dynamic linker is responsible // for writing the entire PLT. We just need to // reserve 8 bytes for each PLT entry and generate a // JMP_SLOT dynamic relocation for it. // // TODO(austin): ABI v1 is different s.Plt = int32(plt.Size) plt.Size += 8 ld.Addaddrplus(ctxt, rela, plt, int64(s.Plt)) ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_PPC64_JMP_SLOT)) ld.Adduint64(ctxt, rela, 0) } else { ld.Diag("addpltsym: unsupported binary format") } }
func addgotsym(s *ld.Symbol) { if s.Got >= 0 { return } ld.Adddynsym(ld.Ctxt, s) got := ld.Linklookup(ld.Ctxt, ".got", 0) s.Got = int32(got.Size) ld.Adduint64(ld.Ctxt, got, 0) if ld.Iself { rela := ld.Linklookup(ld.Ctxt, ".rela", 0) ld.Addaddrplus(ld.Ctxt, rela, got, int64(s.Got)) ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_390_GLOB_DAT)) ld.Adduint64(ld.Ctxt, rela, 0) } else { ld.Diag("addgotsym: unsupported binary format") } }
// Construct a call stub in stub that calls symbol targ via its PLT // entry. func gencallstub(abicase int, stub *ld.Symbol, targ *ld.Symbol) { if abicase != 1 { // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC // relocations, we'll need to implement cases 2 and 3. log.Fatalf("gencallstub only implements case 1 calls") } plt := ld.Linklookup(ld.Ctxt, ".plt", 0) stub.Type = obj.STEXT // Save TOC pointer in TOC save slot ld.Adduint32(ld.Ctxt, stub, 0xf8410018) // std r2,24(r1) // Load the function pointer from the PLT. r := ld.Addrel(stub) r.Off = int32(stub.Size) r.Sym = plt r.Add = int64(targ.Plt) r.Siz = 2 if ld.Ctxt.Arch.ByteOrder == binary.BigEndian { r.Off += int32(r.Siz) } r.Type = obj.R_POWER_TOC r.Variant = ld.RV_POWER_HA ld.Adduint32(ld.Ctxt, stub, 0x3d820000) // addis r12,r2,targ@plt@toc@ha r = ld.Addrel(stub) r.Off = int32(stub.Size) r.Sym = plt r.Add = int64(targ.Plt) r.Siz = 2 if ld.Ctxt.Arch.ByteOrder == binary.BigEndian { r.Off += int32(r.Siz) } r.Type = obj.R_POWER_TOC r.Variant = ld.RV_POWER_LO ld.Adduint32(ld.Ctxt, stub, 0xe98c0000) // ld r12,targ@plt@toc@l(r12) // Jump to the loaded pointer ld.Adduint32(ld.Ctxt, stub, 0x7d8903a6) // mtctr r12 ld.Adduint32(ld.Ctxt, stub, 0x4e800420) // bctr }
func addgotsym(ctxt *ld.Link, s *ld.Symbol) { if s.Got >= 0 { return } ld.Adddynsym(ctxt, s) got := ctxt.Syms.Lookup(".got", 0) s.Got = int32(got.Size) ld.Adduint32(ctxt, got, 0) if ld.Iself { rel := ctxt.Syms.Lookup(".rel", 0) ld.Addaddrplus(ctxt, rel, got, int64(s.Got)) ld.Adduint32(ctxt, rel, ld.ELF32_R_INFO(uint32(s.Dynid), ld.R_386_GLOB_DAT)) } else if ld.Headtype == obj.Hdarwin { ld.Adduint32(ctxt, ctxt.Syms.Lookup(".linkedit.got", 0), uint32(s.Dynid)) } else { ld.Errorf(s, "addgotsym: unsupported binary format") } }
func addgotsym(ctxt *ld.Link, s *ld.Symbol) { if s.Got >= 0 { return } ld.Adddynsym(ctxt, s) got := ld.Linklookup(ctxt, ".got", 0) s.Got = int32(got.Size) ld.Adduint64(ctxt, got, 0) if ld.Iself { rela := ld.Linklookup(ctxt, ".rela", 0) ld.Addaddrplus(ctxt, rela, got, int64(s.Got)) ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_X86_64_GLOB_DAT)) ld.Adduint64(ctxt, rela, 0) } else if ld.HEADTYPE == obj.Hdarwin { ld.Adduint32(ctxt, ld.Linklookup(ctxt, ".linkedit.got", 0), uint32(s.Dynid)) } else { ctxt.Diag("addgotsym: unsupported binary format") } }
func adddynrel(ctxt *ld.Link, s *ld.Symbol, r *ld.Reloc) { targ := r.Sym ctxt.Cursym = s switch r.Type { default: if r.Type >= 256 { ctxt.Diag("unexpected relocation type %d", r.Type) return } // Handle relocations found in ELF object files. case 256 + ld.R_X86_64_PC32: if targ.Type == obj.SDYNIMPORT { ctxt.Diag("unexpected R_X86_64_PC32 relocation for dynamic symbol %s", targ.Name) } if targ.Type == 0 || targ.Type == obj.SXREF { ctxt.Diag("unknown symbol %s in pcrel", targ.Name) } r.Type = obj.R_PCREL r.Add += 4 return case 256 + ld.R_X86_64_PLT32: r.Type = obj.R_PCREL r.Add += 4 if targ.Type == obj.SDYNIMPORT { addpltsym(ctxt, targ) r.Sym = ld.Linklookup(ctxt, ".plt", 0) r.Add += int64(targ.Plt) } return case 256 + ld.R_X86_64_GOTPCREL, 256 + ld.R_X86_64_GOTPCRELX, 256 + ld.R_X86_64_REX_GOTPCRELX: if targ.Type != obj.SDYNIMPORT { // have symbol if r.Off >= 2 && s.P[r.Off-2] == 0x8b { // turn MOVQ of GOT entry into LEAQ of symbol itself s.P[r.Off-2] = 0x8d r.Type = obj.R_PCREL r.Add += 4 return } } // fall back to using GOT and hope for the best (CMOV*) // TODO: just needs relocation, no need to put in .dynsym addgotsym(ctxt, targ) r.Type = obj.R_PCREL r.Sym = ld.Linklookup(ctxt, ".got", 0) r.Add += 4 r.Add += int64(targ.Got) return case 256 + ld.R_X86_64_64: if targ.Type == obj.SDYNIMPORT { ctxt.Diag("unexpected R_X86_64_64 relocation for dynamic symbol %s", targ.Name) } r.Type = obj.R_ADDR return // Handle relocations found in Mach-O object files. case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 0, 512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 0, 512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 0: // TODO: What is the difference between all these? r.Type = obj.R_ADDR if targ.Type == obj.SDYNIMPORT { ctxt.Diag("unexpected reloc for dynamic symbol %s", targ.Name) } return case 512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 1: if targ.Type == obj.SDYNIMPORT { addpltsym(ctxt, targ) r.Sym = ld.Linklookup(ctxt, ".plt", 0) r.Add = int64(targ.Plt) r.Type = obj.R_PCREL return } fallthrough // fall through case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED_1*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED_2*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED_4*2 + 1: r.Type = obj.R_PCREL if targ.Type == obj.SDYNIMPORT { ctxt.Diag("unexpected pc-relative reloc for dynamic symbol %s", targ.Name) } return case 512 + ld.MACHO_X86_64_RELOC_GOT_LOAD*2 + 1: if targ.Type != obj.SDYNIMPORT { // have symbol // turn MOVQ of GOT entry into LEAQ of symbol itself if r.Off < 2 || s.P[r.Off-2] != 0x8b { ctxt.Diag("unexpected GOT_LOAD reloc for non-dynamic symbol %s", targ.Name) return } s.P[r.Off-2] = 0x8d r.Type = obj.R_PCREL return } fallthrough // fall through case 512 + ld.MACHO_X86_64_RELOC_GOT*2 + 1: if targ.Type != obj.SDYNIMPORT { ctxt.Diag("unexpected GOT reloc for non-dynamic symbol %s", targ.Name) } addgotsym(ctxt, targ) r.Type = obj.R_PCREL r.Sym = ld.Linklookup(ctxt, ".got", 0) r.Add += int64(targ.Got) return } // Handle references to ELF symbols from our own object files. if targ.Type != obj.SDYNIMPORT { return } switch r.Type { case obj.R_CALL, obj.R_PCREL: if ld.HEADTYPE == obj.Hwindows { // nothing to do, the relocation will be laid out in pereloc1 return } else { // for both ELF and Mach-O addpltsym(ctxt, targ) r.Sym = ld.Linklookup(ctxt, ".plt", 0) r.Add = int64(targ.Plt) return } case obj.R_ADDR: if s.Type == obj.STEXT && ld.Iself { if ld.HEADTYPE == obj.Hsolaris { addpltsym(ctxt, targ) r.Sym = ld.Linklookup(ctxt, ".plt", 0) r.Add += int64(targ.Plt) return } // The code is asking for the address of an external // function. We provide it with the address of the // correspondent GOT symbol. addgotsym(ctxt, targ) r.Sym = ld.Linklookup(ctxt, ".got", 0) r.Add += int64(targ.Got) return } if s.Type != obj.SDATA { break } if ld.Iself { ld.Adddynsym(ctxt, targ) rela := ld.Linklookup(ctxt, ".rela", 0) ld.Addaddrplus(ctxt, rela, s, int64(r.Off)) if r.Siz == 8 { ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_64)) } else { ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_32)) } ld.Adduint64(ctxt, rela, uint64(r.Add)) r.Type = 256 // ignore during relocsym return } if ld.HEADTYPE == obj.Hdarwin && s.Size == int64(ld.SysArch.PtrSize) && r.Off == 0 { // Mach-O relocations are a royal pain to lay out. // They use a compact stateful bytecode representation // that is too much bother to deal with. // Instead, interpret the C declaration // void *_Cvar_stderr = &stderr; // as making _Cvar_stderr the name of a GOT entry // for stderr. This is separate from the usual GOT entry, // just in case the C code assigns to the variable, // and of course it only works for single pointers, // but we only need to support cgo and that's all it needs. ld.Adddynsym(ctxt, targ) got := ld.Linklookup(ctxt, ".got", 0) s.Type = got.Type | obj.SSUB s.Outer = got s.Sub = got.Sub got.Sub = s s.Value = got.Size ld.Adduint64(ctxt, got, 0) ld.Adduint32(ctxt, ld.Linklookup(ctxt, ".linkedit.got", 0), uint32(targ.Dynid)) r.Type = 256 // ignore during relocsym return } if ld.HEADTYPE == obj.Hwindows { // nothing to do, the relocation will be laid out in pereloc1 return } } ctxt.Cursym = s ctxt.Diag("unsupported relocation for dynamic symbol %s (type=%d stype=%d)", targ.Name, r.Type, targ.Type) }
func adddynrel(ctxt *ld.Link, s *ld.Symbol, r *ld.Reloc) bool { targ := r.Sym switch r.Type { default: if r.Type >= 256 { ld.Errorf(s, "unexpected relocation type %d", r.Type) return false } // Handle relocations found in ELF object files. case 256 + ld.R_X86_64_PC32: if targ.Type == obj.SDYNIMPORT { ld.Errorf(s, "unexpected R_X86_64_PC32 relocation for dynamic symbol %s", targ.Name) } if targ.Type == 0 || targ.Type == obj.SXREF { ld.Errorf(s, "unknown symbol %s in pcrel", targ.Name) } r.Type = obj.R_PCREL r.Add += 4 return true case 256 + ld.R_X86_64_PLT32: r.Type = obj.R_PCREL r.Add += 4 if targ.Type == obj.SDYNIMPORT { addpltsym(ctxt, targ) r.Sym = ctxt.Syms.Lookup(".plt", 0) r.Add += int64(targ.Plt) } return true case 256 + ld.R_X86_64_GOTPCREL, 256 + ld.R_X86_64_GOTPCRELX, 256 + ld.R_X86_64_REX_GOTPCRELX: if targ.Type != obj.SDYNIMPORT { // have symbol if r.Off >= 2 && s.P[r.Off-2] == 0x8b { // turn MOVQ of GOT entry into LEAQ of symbol itself s.P[r.Off-2] = 0x8d r.Type = obj.R_PCREL r.Add += 4 return true } } // fall back to using GOT and hope for the best (CMOV*) // TODO: just needs relocation, no need to put in .dynsym addgotsym(ctxt, targ) r.Type = obj.R_PCREL r.Sym = ctxt.Syms.Lookup(".got", 0) r.Add += 4 r.Add += int64(targ.Got) return true case 256 + ld.R_X86_64_64: if targ.Type == obj.SDYNIMPORT { ld.Errorf(s, "unexpected R_X86_64_64 relocation for dynamic symbol %s", targ.Name) } r.Type = obj.R_ADDR return true // Handle relocations found in Mach-O object files. case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 0, 512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 0, 512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 0: // TODO: What is the difference between all these? r.Type = obj.R_ADDR if targ.Type == obj.SDYNIMPORT { ld.Errorf(s, "unexpected reloc for dynamic symbol %s", targ.Name) } return true case 512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 1: if targ.Type == obj.SDYNIMPORT { addpltsym(ctxt, targ) r.Sym = ctxt.Syms.Lookup(".plt", 0) r.Add = int64(targ.Plt) r.Type = obj.R_PCREL return true } fallthrough // fall through case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED_1*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED_2*2 + 1, 512 + ld.MACHO_X86_64_RELOC_SIGNED_4*2 + 1: r.Type = obj.R_PCREL if targ.Type == obj.SDYNIMPORT { ld.Errorf(s, "unexpected pc-relative reloc for dynamic symbol %s", targ.Name) } return true case 512 + ld.MACHO_X86_64_RELOC_GOT_LOAD*2 + 1: if targ.Type != obj.SDYNIMPORT { // have symbol // turn MOVQ of GOT entry into LEAQ of symbol itself if r.Off < 2 || s.P[r.Off-2] != 0x8b { ld.Errorf(s, "unexpected GOT_LOAD reloc for non-dynamic symbol %s", targ.Name) return false } s.P[r.Off-2] = 0x8d r.Type = obj.R_PCREL return true } fallthrough // fall through case 512 + ld.MACHO_X86_64_RELOC_GOT*2 + 1: if targ.Type != obj.SDYNIMPORT { ld.Errorf(s, "unexpected GOT reloc for non-dynamic symbol %s", targ.Name) } addgotsym(ctxt, targ) r.Type = obj.R_PCREL r.Sym = ctxt.Syms.Lookup(".got", 0) r.Add += int64(targ.Got) return true } switch r.Type { case obj.R_CALL, obj.R_PCREL: if targ.Type != obj.SDYNIMPORT { // nothing to do, the relocation will be laid out in reloc return true } if ld.Headtype == obj.Hwindows || ld.Headtype == obj.Hwindowsgui { // nothing to do, the relocation will be laid out in pereloc1 return true } else { // for both ELF and Mach-O addpltsym(ctxt, targ) r.Sym = ctxt.Syms.Lookup(".plt", 0) r.Add = int64(targ.Plt) return true } case obj.R_ADDR: if s.Type == obj.STEXT && ld.Iself { if ld.Headtype == obj.Hsolaris { addpltsym(ctxt, targ) r.Sym = ctxt.Syms.Lookup(".plt", 0) r.Add += int64(targ.Plt) return true } // The code is asking for the address of an external // function. We provide it with the address of the // correspondent GOT symbol. addgotsym(ctxt, targ) r.Sym = ctxt.Syms.Lookup(".got", 0) r.Add += int64(targ.Got) return true } // Process dynamic relocations for the data sections. if ld.Buildmode == ld.BuildmodePIE && ld.Linkmode == ld.LinkInternal { // When internally linking, generate dynamic relocations // for all typical R_ADDR relocations. The exception // are those R_ADDR that are created as part of generating // the dynamic relocations and must be resolved statically. // // There are three phases relevant to understanding this: // // dodata() // we are here // address() // symbol address assignment // reloc() // resolution of static R_ADDR relocs // // At this point symbol addresses have not been // assigned yet (as the final size of the .rela section // will affect the addresses), and so we cannot write // the Elf64_Rela.r_offset now. Instead we delay it // until after the 'address' phase of the linker is // complete. We do this via Addaddrplus, which creates // a new R_ADDR relocation which will be resolved in // the 'reloc' phase. // // These synthetic static R_ADDR relocs must be skipped // now, or else we will be caught in an infinite loop // of generating synthetic relocs for our synthetic // relocs. switch s.Name { case ".dynsym", ".rela", ".got.plt", ".dynamic": return false } } else { // Either internally linking a static executable, // in which case we can resolve these relocations // statically in the 'reloc' phase, or externally // linking, in which case the relocation will be // prepared in the 'reloc' phase and passed to the // external linker in the 'asmb' phase. if s.Type != obj.SDATA && s.Type != obj.SRODATA { break } } if ld.Iself { // TODO: We generate a R_X86_64_64 relocation for every R_ADDR, even // though it would be more efficient (for the dynamic linker) if we // generated R_X86_RELATIVE instead. ld.Adddynsym(ctxt, targ) rela := ctxt.Syms.Lookup(".rela", 0) ld.Addaddrplus(ctxt, rela, s, int64(r.Off)) if r.Siz == 8 { ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_64)) } else { // TODO: never happens, remove. ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_32)) } ld.Adduint64(ctxt, rela, uint64(r.Add)) r.Type = 256 // ignore during relocsym return true } if ld.Headtype == obj.Hdarwin && s.Size == int64(ld.SysArch.PtrSize) && r.Off == 0 { // Mach-O relocations are a royal pain to lay out. // They use a compact stateful bytecode representation // that is too much bother to deal with. // Instead, interpret the C declaration // void *_Cvar_stderr = &stderr; // as making _Cvar_stderr the name of a GOT entry // for stderr. This is separate from the usual GOT entry, // just in case the C code assigns to the variable, // and of course it only works for single pointers, // but we only need to support cgo and that's all it needs. ld.Adddynsym(ctxt, targ) got := ctxt.Syms.Lookup(".got", 0) s.Type = got.Type | obj.SSUB s.Outer = got s.Sub = got.Sub got.Sub = s s.Value = got.Size ld.Adduint64(ctxt, got, 0) ld.Adduint32(ctxt, ctxt.Syms.Lookup(".linkedit.got", 0), uint32(targ.Dynid)) r.Type = 256 // ignore during relocsym return true } if ld.Headtype == obj.Hwindows || ld.Headtype == obj.Hwindowsgui { // nothing to do, the relocation will be laid out in pereloc1 return true } } return false }
// resolve direct jump relocation r in s, and add trampoline if necessary func trampoline(ctxt *ld.Link, r *ld.Reloc, s *ld.Symbol) { t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) switch r.Type { case obj.R_CALLPOWER: // If branch offset is too far then create a trampoline. if int64(int32(t<<6)>>6) != t || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) { var tramp *ld.Symbol for i := 0; ; i++ { // Using r.Add as part of the name is significant in functions like duffzero where the call // target is at some offset within the function. Calls to duff+8 and duff+256 must appear as // distinct trampolines. name := r.Sym.Name if r.Add == 0 { name = name + fmt.Sprintf("-tramp%d", i) } else { name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i) } // Look up the trampoline in case it already exists tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version)) if tramp.Value == 0 { break } t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off)) // If the offset of the trampoline that has been found is within range, use it. if int64(int32(t<<6)>>6) == t { break } } if tramp.Type == 0 { ctxt.AddTramp(tramp) tramp.Size = 16 // 4 instructions tramp.P = make([]byte, tramp.Size) t = ld.Symaddr(r.Sym) + r.Add f := t & 0xffff0000 o1 := uint32(0x3fe00000 | (f >> 16)) // lis r31,trampaddr hi (r31 is temp reg) f = t & 0xffff o2 := uint32(0x63ff0000 | f) // ori r31,trampaddr lo o3 := uint32(0x7fe903a6) // mtctr o4 := uint32(0x4e800420) // bctr ld.SysArch.ByteOrder.PutUint32(tramp.P, o1) ld.SysArch.ByteOrder.PutUint32(tramp.P[4:], o2) ld.SysArch.ByteOrder.PutUint32(tramp.P[8:], o3) ld.SysArch.ByteOrder.PutUint32(tramp.P[12:], o4) } r.Sym = tramp r.Add = 0 // This was folded into the trampoline target address r.Done = 0 } default: ld.Errorf(s, "trampoline called with non-jump reloc: %v", r.Type) } }
func addpltsym(ctxt *ld.Link, s *ld.Symbol) { if s.Plt >= 0 { return } ld.Adddynsym(ctxt, s) if ld.Iself { plt := ld.Linklookup(ctxt, ".plt", 0) got := ld.Linklookup(ctxt, ".got.plt", 0) rela := ld.Linklookup(ctxt, ".rela.plt", 0) if plt.Size == 0 { elfsetupplt(ctxt) } // jmpq *got+size(IP) ld.Adduint8(ctxt, plt, 0xff) ld.Adduint8(ctxt, plt, 0x25) ld.Addpcrelplus(ctxt, plt, got, got.Size) // add to got: pointer to current pos in plt ld.Addaddrplus(ctxt, got, plt, plt.Size) // pushq $x ld.Adduint8(ctxt, plt, 0x68) ld.Adduint32(ctxt, plt, uint32((got.Size-24-8)/8)) // jmpq .plt ld.Adduint8(ctxt, plt, 0xe9) ld.Adduint32(ctxt, plt, uint32(-(plt.Size + 4))) // rela ld.Addaddrplus(ctxt, rela, got, got.Size-8) ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_X86_64_JMP_SLOT)) ld.Adduint64(ctxt, rela, 0) s.Plt = int32(plt.Size - 16) } else if ld.HEADTYPE == obj.Hdarwin { // To do lazy symbol lookup right, we're supposed // to tell the dynamic loader which library each // symbol comes from and format the link info // section just so. I'm too lazy (ha!) to do that // so for now we'll just use non-lazy pointers, // which don't need to be told which library to use. // // http://networkpx.blogspot.com/2009/09/about-lcdyldinfoonly-command.html // has details about what we're avoiding. addgotsym(ctxt, s) plt := ld.Linklookup(ctxt, ".plt", 0) ld.Adduint32(ctxt, ld.Linklookup(ctxt, ".linkedit.plt", 0), uint32(s.Dynid)) // jmpq *got+size(IP) s.Plt = int32(plt.Size) ld.Adduint8(ctxt, plt, 0xff) ld.Adduint8(ctxt, plt, 0x25) ld.Addpcrelplus(ctxt, plt, ld.Linklookup(ctxt, ".got", 0), int64(s.Got)) } else { ctxt.Diag("addpltsym: unsupported binary format") } }
func addpltsym(ctxt *ld.Link, s *ld.Symbol) { if s.Plt >= 0 { return } ld.Adddynsym(ctxt, s) if ld.Iself { plt := ld.Linklookup(ctxt, ".plt", 0) got := ld.Linklookup(ctxt, ".got", 0) rela := ld.Linklookup(ctxt, ".rela.plt", 0) if plt.Size == 0 { elfsetupplt(ctxt) } // larl %r1,_GLOBAL_OFFSET_TABLE_+index ld.Adduint8(ctxt, plt, 0xc0) ld.Adduint8(ctxt, plt, 0x10) ld.Addpcrelplus(ctxt, plt, got, got.Size+6) // need variant? // add to got: pointer to current pos in plt ld.Addaddrplus(ctxt, got, plt, plt.Size+8) // weird but correct // lg %r1,0(%r1) ld.Adduint8(ctxt, plt, 0xe3) ld.Adduint8(ctxt, plt, 0x10) ld.Adduint8(ctxt, plt, 0x10) ld.Adduint8(ctxt, plt, 0x00) ld.Adduint8(ctxt, plt, 0x00) ld.Adduint8(ctxt, plt, 0x04) // br %r1 ld.Adduint8(ctxt, plt, 0x07) ld.Adduint8(ctxt, plt, 0xf1) // basr %r1,%r0 ld.Adduint8(ctxt, plt, 0x0d) ld.Adduint8(ctxt, plt, 0x10) // lgf %r1,12(%r1) ld.Adduint8(ctxt, plt, 0xe3) ld.Adduint8(ctxt, plt, 0x10) ld.Adduint8(ctxt, plt, 0x10) ld.Adduint8(ctxt, plt, 0x0c) ld.Adduint8(ctxt, plt, 0x00) ld.Adduint8(ctxt, plt, 0x14) // jg .plt ld.Adduint8(ctxt, plt, 0xc0) ld.Adduint8(ctxt, plt, 0xf4) ld.Adduint32(ctxt, plt, uint32(-((plt.Size - 2) >> 1))) // roll-your-own relocation //.plt index ld.Adduint32(ctxt, plt, uint32(rela.Size)) // rela size before current entry // rela ld.Addaddrplus(ctxt, rela, got, got.Size-8) ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_390_JMP_SLOT)) ld.Adduint64(ctxt, rela, 0) s.Plt = int32(plt.Size - 32) } else { ctxt.Diag("addpltsym: unsupported binary format") } }
func adddynrel(ctxt *ld.Link, s *ld.Symbol, r *ld.Reloc) { targ := r.Sym ctxt.Cursym = s switch r.Type { default: if r.Type >= 256 { ctxt.Diag("unexpected relocation type %d", r.Type) return } // Handle relocations found in ELF object files. case 256 + ld.R_386_PC32: if targ.Type == obj.SDYNIMPORT { ctxt.Diag("unexpected R_386_PC32 relocation for dynamic symbol %s", targ.Name) } if targ.Type == 0 || targ.Type == obj.SXREF { ctxt.Diag("unknown symbol %s in pcrel", targ.Name) } r.Type = obj.R_PCREL r.Add += 4 return case 256 + ld.R_386_PLT32: r.Type = obj.R_PCREL r.Add += 4 if targ.Type == obj.SDYNIMPORT { addpltsym(ctxt, targ) r.Sym = ld.Linklookup(ctxt, ".plt", 0) r.Add += int64(targ.Plt) } return case 256 + ld.R_386_GOT32, 256 + ld.R_386_GOT32X: if targ.Type != obj.SDYNIMPORT { // have symbol if r.Off >= 2 && s.P[r.Off-2] == 0x8b { // turn MOVL of GOT entry into LEAL of symbol address, relative to GOT. s.P[r.Off-2] = 0x8d r.Type = obj.R_GOTOFF return } if r.Off >= 2 && s.P[r.Off-2] == 0xff && s.P[r.Off-1] == 0xb3 { // turn PUSHL of GOT entry into PUSHL of symbol itself. // use unnecessary SS prefix to keep instruction same length. s.P[r.Off-2] = 0x36 s.P[r.Off-1] = 0x68 r.Type = obj.R_ADDR return } ctxt.Diag("unexpected GOT reloc for non-dynamic symbol %s", targ.Name) return } addgotsym(ctxt, targ) r.Type = obj.R_CONST // write r->add during relocsym r.Sym = nil r.Add += int64(targ.Got) return case 256 + ld.R_386_GOTOFF: r.Type = obj.R_GOTOFF return case 256 + ld.R_386_GOTPC: r.Type = obj.R_PCREL r.Sym = ld.Linklookup(ctxt, ".got", 0) r.Add += 4 return case 256 + ld.R_386_32: if targ.Type == obj.SDYNIMPORT { ctxt.Diag("unexpected R_386_32 relocation for dynamic symbol %s", targ.Name) } r.Type = obj.R_ADDR return case 512 + ld.MACHO_GENERIC_RELOC_VANILLA*2 + 0: r.Type = obj.R_ADDR if targ.Type == obj.SDYNIMPORT { ctxt.Diag("unexpected reloc for dynamic symbol %s", targ.Name) } return case 512 + ld.MACHO_GENERIC_RELOC_VANILLA*2 + 1: if targ.Type == obj.SDYNIMPORT { addpltsym(ctxt, targ) r.Sym = ld.Linklookup(ctxt, ".plt", 0) r.Add = int64(targ.Plt) r.Type = obj.R_PCREL return } r.Type = obj.R_PCREL return case 512 + ld.MACHO_FAKE_GOTPCREL: if targ.Type != obj.SDYNIMPORT { // have symbol // turn MOVL of GOT entry into LEAL of symbol itself if r.Off < 2 || s.P[r.Off-2] != 0x8b { ctxt.Diag("unexpected GOT reloc for non-dynamic symbol %s", targ.Name) return } s.P[r.Off-2] = 0x8d r.Type = obj.R_PCREL return } addgotsym(ctxt, targ) r.Sym = ld.Linklookup(ctxt, ".got", 0) r.Add += int64(targ.Got) r.Type = obj.R_PCREL return } // Handle references to ELF symbols from our own object files. if targ.Type != obj.SDYNIMPORT { return } switch r.Type { case obj.R_CALL, obj.R_PCREL: addpltsym(ctxt, targ) r.Sym = ld.Linklookup(ctxt, ".plt", 0) r.Add = int64(targ.Plt) return case obj.R_ADDR: if s.Type != obj.SDATA { break } if ld.Iself { ld.Adddynsym(ctxt, targ) rel := ld.Linklookup(ctxt, ".rel", 0) ld.Addaddrplus(ctxt, rel, s, int64(r.Off)) ld.Adduint32(ctxt, rel, ld.ELF32_R_INFO(uint32(targ.Dynid), ld.R_386_32)) r.Type = obj.R_CONST // write r->add during relocsym r.Sym = nil return } if ld.HEADTYPE == obj.Hdarwin && s.Size == int64(ld.SysArch.PtrSize) && r.Off == 0 { // Mach-O relocations are a royal pain to lay out. // They use a compact stateful bytecode representation // that is too much bother to deal with. // Instead, interpret the C declaration // void *_Cvar_stderr = &stderr; // as making _Cvar_stderr the name of a GOT entry // for stderr. This is separate from the usual GOT entry, // just in case the C code assigns to the variable, // and of course it only works for single pointers, // but we only need to support cgo and that's all it needs. ld.Adddynsym(ctxt, targ) got := ld.Linklookup(ctxt, ".got", 0) s.Type = got.Type | obj.SSUB s.Outer = got s.Sub = got.Sub got.Sub = s s.Value = got.Size ld.Adduint32(ctxt, got, 0) ld.Adduint32(ctxt, ld.Linklookup(ctxt, ".linkedit.got", 0), uint32(targ.Dynid)) r.Type = 256 // ignore during relocsym return } if ld.HEADTYPE == obj.Hwindows && s.Size == int64(ld.SysArch.PtrSize) { // nothing to do, the relocation will be laid out in pereloc1 return } } ctxt.Cursym = s ctxt.Diag("unsupported relocation for dynamic symbol %s (type=%d stype=%d)", targ.Name, r.Type, targ.Type) }