示例#1
0
func makeServerMetrics() ServerMetrics {
	return ServerMetrics{
		Conns:         metric.NewCounter(MetaConns),
		BytesInCount:  metric.NewCounter(MetaBytesIn),
		BytesOutCount: metric.NewCounter(MetaBytesOut),
	}
}
示例#2
0
func BenchmarkDecodeBinaryDecimal(b *testing.B) {
	wbuf := writeBuffer{bytecount: metric.NewCounter()}

	expected := new(parser.DDecimal)
	expected.SetString("-1728718718271827121233.1212121212")
	wbuf.writeBinaryDatum(expected)

	rbuf := readBuffer{msg: wbuf.wrapped.Bytes()}

	plen, err := rbuf.getUint32()
	if err != nil {
		b.Fatal(err)
	}
	bytes, err := rbuf.getBytes(int(plen))
	if err != nil {
		b.Fatal(err)
	}

	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		b.StartTimer()
		got, err := decodeOidDatum(oid.T_numeric, formatBinary, bytes)
		b.StopTimer()
		if err != nil {
			b.Fatal(err)
		} else if got.Compare(expected) != 0 {
			b.Fatalf("expected %s, got %s", expected, got)
		}
	}
}
示例#3
0
func BenchmarkWriteBinaryDecimal(b *testing.B) {
	buf := writeBuffer{bytecount: metric.NewCounter()}

	dec := new(parser.DDecimal)
	dec.SetString("-1728718718271827121233.1212121212")

	// Warm up the buffer.
	buf.writeBinaryDatum(dec)
	buf.wrapped.Reset()

	b.ResetTimer()
	for i := 0; i < b.N; i++ {
		b.StartTimer()
		buf.writeBinaryDatum(dec)
		b.StopTimer()
		buf.wrapped.Reset()
	}
}
示例#4
0
// NewExecutor creates an Executor and registers a callback on the
// system config.
func NewExecutor(cfg ExecutorConfig, stopper *stop.Stopper) *Executor {
	exec := &Executor{
		cfg:     cfg,
		reCache: parser.NewRegexpCache(512),

		Latency:          metric.NewLatency(MetaLatency),
		TxnBeginCount:    metric.NewCounter(MetaTxnBegin),
		TxnCommitCount:   metric.NewCounter(MetaTxnCommit),
		TxnAbortCount:    metric.NewCounter(MetaTxnAbort),
		TxnRollbackCount: metric.NewCounter(MetaTxnRollback),
		SelectCount:      metric.NewCounter(MetaSelect),
		UpdateCount:      metric.NewCounter(MetaUpdate),
		InsertCount:      metric.NewCounter(MetaInsert),
		DeleteCount:      metric.NewCounter(MetaDelete),
		DdlCount:         metric.NewCounter(MetaDdl),
		MiscCount:        metric.NewCounter(MetaMisc),
		QueryCount:       metric.NewCounter(MetaQuery),
	}

	exec.systemConfigCond = sync.NewCond(exec.systemConfigMu.RLocker())

	gossipUpdateC := cfg.Gossip.RegisterSystemConfigChannel()
	stopper.RunWorker(func() {
		for {
			select {
			case <-gossipUpdateC:
				sysCfg, _ := cfg.Gossip.GetSystemConfig()
				exec.updateSystemConfig(sysCfg)
			case <-stopper.ShouldStop():
				return
			}
		}
	})

	return exec
}
示例#5
0
func newStoreMetrics() *StoreMetrics {
	storeRegistry := metric.NewRegistry()
	sm := &StoreMetrics{
		registry: storeRegistry,

		// Replica metrics.
		ReplicaCount:                  metric.NewCounter(metaReplicaCount),
		ReservedReplicaCount:          metric.NewCounter(metaReservedReplicaCount),
		RaftLeaderCount:               metric.NewGauge(metaRaftLeaderCount),
		RaftLeaderNotLeaseHolderCount: metric.NewGauge(metaRaftLeaderNotLeaseHolderCount),
		LeaseHolderCount:              metric.NewGauge(metaLeaseHolderCount),

		// Range metrics.
		AvailableRangeCount: metric.NewGauge(metaAvailableRangeCount),

		// Replication metrics.
		ReplicaAllocatorNoopCount:       metric.NewGauge(metaReplicaAllocatorNoopCount),
		ReplicaAllocatorRemoveCount:     metric.NewGauge(metaReplicaAllocatorRemoveCount),
		ReplicaAllocatorAddCount:        metric.NewGauge(metaReplicaAllocatorAddCount),
		ReplicaAllocatorRemoveDeadCount: metric.NewGauge(metaReplicaAllocatorRemoveDeadCount),

		// Lease request metrics.
		LeaseRequestSuccessCount: metric.NewCounter(metaLeaseRequestSuccessCount),
		LeaseRequestErrorCount:   metric.NewCounter(metaLeaseRequestErrorCount),

		// Storage metrics.
		LiveBytes:       metric.NewGauge(metaLiveBytes),
		KeyBytes:        metric.NewGauge(metaKeyBytes),
		ValBytes:        metric.NewGauge(metaValBytes),
		IntentBytes:     metric.NewGauge(metaIntentBytes),
		LiveCount:       metric.NewGauge(metaLiveCount),
		KeyCount:        metric.NewGauge(metaKeyCount),
		ValCount:        metric.NewGauge(metaValCount),
		IntentCount:     metric.NewGauge(metaIntentCount),
		IntentAge:       metric.NewGauge(metaIntentAge),
		GcBytesAge:      metric.NewGauge(metaGcBytesAge),
		LastUpdateNanos: metric.NewGauge(metaLastUpdateNanos),
		Capacity:        metric.NewGauge(metaCapacity),
		Available:       metric.NewGauge(metaAvailable),
		Reserved:        metric.NewCounter(metaReserved),
		SysBytes:        metric.NewGauge(metaSysBytes),
		SysCount:        metric.NewGauge(metaSysCount),

		// RocksDB metrics.
		RdbBlockCacheHits:           metric.NewGauge(metaRdbBlockCacheHits),
		RdbBlockCacheMisses:         metric.NewGauge(metaRdbBlockCacheMisses),
		RdbBlockCacheUsage:          metric.NewGauge(metaRdbBlockCacheUsage),
		RdbBlockCachePinnedUsage:    metric.NewGauge(metaRdbBlockCachePinnedUsage),
		RdbBloomFilterPrefixChecked: metric.NewGauge(metaRdbBloomFilterPrefixChecked),
		RdbBloomFilterPrefixUseful:  metric.NewGauge(metaRdbBloomFilterPrefixUseful),
		RdbMemtableHits:             metric.NewGauge(metaRdbMemtableHits),
		RdbMemtableMisses:           metric.NewGauge(metaRdbMemtableMisses),
		RdbMemtableTotalSize:        metric.NewGauge(metaRdbMemtableTotalSize),
		RdbFlushes:                  metric.NewGauge(metaRdbFlushes),
		RdbCompactions:              metric.NewGauge(metaRdbCompactions),
		RdbTableReadersMemEstimate:  metric.NewGauge(metaRdbTableReadersMemEstimate),
		RdbReadAmplification:        metric.NewGauge(metaRdbReadAmplification),

		// Range event metrics.
		RangeSplits:                     metric.NewCounter(metaRangeSplits),
		RangeAdds:                       metric.NewCounter(metaRangeAdds),
		RangeRemoves:                    metric.NewCounter(metaRangeRemoves),
		RangeSnapshotsGenerated:         metric.NewCounter(metaRangeSnapshotsGenerated),
		RangeSnapshotsNormalApplied:     metric.NewCounter(metaRangeSnapshotsNormalApplied),
		RangeSnapshotsPreemptiveApplied: metric.NewCounter(metaRangeSnapshotsPreemptiveApplied),

		// Raft processing metrics.
		RaftTicks:                metric.NewCounter(metaRaftTicks),
		RaftSelectDurationNanos:  metric.NewCounter(metaRaftSelectDurationNanos),
		RaftWorkingDurationNanos: metric.NewCounter(metaRaftWorkingDurationNanos),
		RaftTickingDurationNanos: metric.NewCounter(metaRaftTickingDurationNanos),

		// Raft message metrics.
		RaftRcvdMsgProp:           metric.NewCounter(metaRaftRcvdProp),
		RaftRcvdMsgApp:            metric.NewCounter(metaRaftRcvdApp),
		RaftRcvdMsgAppResp:        metric.NewCounter(metaRaftRcvdAppResp),
		RaftRcvdMsgVote:           metric.NewCounter(metaRaftRcvdVote),
		RaftRcvdMsgVoteResp:       metric.NewCounter(metaRaftRcvdVoteResp),
		RaftRcvdMsgSnap:           metric.NewCounter(metaRaftRcvdSnap),
		RaftRcvdMsgHeartbeat:      metric.NewCounter(metaRaftRcvdHeartbeat),
		RaftRcvdMsgHeartbeatResp:  metric.NewCounter(metaRaftRcvdHeartbeatResp),
		RaftRcvdMsgTransferLeader: metric.NewCounter(metaRaftRcvdTransferLeader),
		RaftRcvdMsgTimeoutNow:     metric.NewCounter(metaRaftRcvdTimeoutNow),
		raftRcvdMessages:          make(map[raftpb.MessageType]*metric.Counter, len(raftpb.MessageType_name)),

		RaftEnqueuedPending: metric.NewGauge(metaRaftEnqueuedPending),
	}

	sm.raftRcvdMessages[raftpb.MsgProp] = sm.RaftRcvdMsgProp
	sm.raftRcvdMessages[raftpb.MsgApp] = sm.RaftRcvdMsgApp
	sm.raftRcvdMessages[raftpb.MsgAppResp] = sm.RaftRcvdMsgAppResp
	sm.raftRcvdMessages[raftpb.MsgVote] = sm.RaftRcvdMsgVote
	sm.raftRcvdMessages[raftpb.MsgVoteResp] = sm.RaftRcvdMsgVoteResp
	sm.raftRcvdMessages[raftpb.MsgSnap] = sm.RaftRcvdMsgSnap
	sm.raftRcvdMessages[raftpb.MsgHeartbeat] = sm.RaftRcvdMsgHeartbeat
	sm.raftRcvdMessages[raftpb.MsgHeartbeatResp] = sm.RaftRcvdMsgHeartbeatResp
	sm.raftRcvdMessages[raftpb.MsgTransferLeader] = sm.RaftRcvdMsgTransferLeader
	sm.raftRcvdMessages[raftpb.MsgTimeoutNow] = sm.RaftRcvdMsgTimeoutNow

	storeRegistry.AddMetricStruct(sm)

	return sm
}
示例#6
0
// TestMetricsRecorder verifies that the metrics recorder properly formats the
// statistics from various registries, both for Time Series and for Status
// Summaries.
func TestMetricsRecorder(t *testing.T) {
	defer leaktest.AfterTest(t)()

	// ========================================
	// Construct a series of fake descriptors for use in test.
	// ========================================
	nodeDesc := roachpb.NodeDescriptor{
		NodeID: roachpb.NodeID(1),
	}
	storeDesc1 := roachpb.StoreDescriptor{
		StoreID: roachpb.StoreID(1),
		Capacity: roachpb.StoreCapacity{
			Capacity:  100,
			Available: 50,
		},
	}
	storeDesc2 := roachpb.StoreDescriptor{
		StoreID: roachpb.StoreID(2),
		Capacity: roachpb.StoreCapacity{
			Capacity:  200,
			Available: 75,
		},
	}

	// ========================================
	// Create registries and add them to the recorder (two node-level, two
	// store-level).
	// ========================================
	reg1 := metric.NewRegistry()
	store1 := fakeStore{
		storeID:  roachpb.StoreID(1),
		desc:     storeDesc1,
		registry: metric.NewRegistry(),
	}
	store2 := fakeStore{
		storeID:  roachpb.StoreID(2),
		desc:     storeDesc2,
		registry: metric.NewRegistry(),
	}
	manual := hlc.NewManualClock(100)
	recorder := NewMetricsRecorder(hlc.NewClock(manual.UnixNano))
	recorder.AddStore(store1)
	recorder.AddStore(store2)
	recorder.AddNode(reg1, nodeDesc, 50)

	// Ensure the metric system's view of time does not advance during this test
	// as the test expects time to not advance too far which would age the actual
	// data (e.g. in histogram's) unexpectedly.
	defer metric.TestingSetNow(func() time.Time {
		return time.Unix(0, manual.UnixNano()).UTC()
	})()

	// ========================================
	// Generate Metrics Data & Expected Results
	// ========================================

	// Flatten the four registries into an array for ease of use.
	regList := []struct {
		reg    *metric.Registry
		prefix string
		source int64
		isNode bool
	}{
		{
			reg:    reg1,
			prefix: "one.",
			source: 1,
			isNode: true,
		},
		{
			reg:    reg1,
			prefix: "two.",
			source: 1,
			isNode: true,
		},
		{
			reg:    store1.registry,
			prefix: "",
			source: int64(store1.storeID),
			isNode: false,
		},
		{
			reg:    store2.registry,
			prefix: "",
			source: int64(store2.storeID),
			isNode: false,
		},
	}

	// Every registry will have a copy of the following metrics.
	metricNames := []struct {
		name string
		typ  string
		val  int64
	}{
		{"testGauge", "gauge", 20},
		{"testGaugeFloat64", "floatgauge", 20},
		{"testCounter", "counter", 5},
		{"testRate", "rate", 2},
		{"testHistogram", "histogram", 10},
		{"testLatency", "latency", 10},

		// Stats needed for store summaries.
		{"ranges", "counter", 1},
		{"replicas.leaders", "gauge", 1},
		{"replicas.leaseholders", "gauge", 1},
		{"ranges.available", "gauge", 1},
	}

	// Add the metrics to each registry and set their values. At the same time,
	// generate expected time series results and status summary metric values.
	var expected []tspb.TimeSeriesData
	expectedNodeSummaryMetrics := make(map[string]float64)
	expectedStoreSummaryMetrics := make(map[string]float64)

	// addExpected generates expected data for a single metric data point.
	addExpected := func(prefix, name string, source, time, val int64, isNode bool) {
		// Generate time series data.
		tsPrefix := "cr.node."
		if !isNode {
			tsPrefix = "cr.store."
		}
		expect := tspb.TimeSeriesData{
			Name:   tsPrefix + prefix + name,
			Source: strconv.FormatInt(source, 10),
			Datapoints: []tspb.TimeSeriesDatapoint{
				{
					TimestampNanos: time,
					Value:          float64(val),
				},
			},
		}
		expected = append(expected, expect)

		// Generate status summary data.
		if isNode {
			expectedNodeSummaryMetrics[prefix+name] = float64(val)
		} else {
			// This can overwrite the previous value, but this is expected as
			// all stores in our tests have identical values; when comparing
			// status summaries, the same map is used as expected data for all
			// stores.
			expectedStoreSummaryMetrics[prefix+name] = float64(val)
		}
	}

	for _, reg := range regList {
		for _, data := range metricNames {
			switch data.typ {
			case "gauge":
				g := metric.NewGauge(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(g)
				g.Update(data.val)
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "floatgauge":
				g := metric.NewGaugeFloat64(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(g)
				g.Update(float64(data.val))
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "counter":
				c := metric.NewCounter(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetric(c)
				c.Inc((data.val))
				addExpected(reg.prefix, data.name, reg.source, 100, data.val, reg.isNode)
			case "rate":
				r := metric.NewRates(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetricGroup(r)
				r.Add(data.val)
				addExpected(reg.prefix, data.name+"-count", reg.source, 100, data.val, reg.isNode)
				for _, scale := range metric.DefaultTimeScales {
					// Rate data is subject to timing errors in tests. Zero out
					// these values.
					addExpected(reg.prefix, data.name+sep+scale.Name(), reg.source, 100, 0, reg.isNode)
				}
			case "histogram":
				h := metric.NewHistogram(metric.Metadata{Name: reg.prefix + data.name}, time.Second, 1000, 2)
				reg.reg.AddMetric(h)
				h.RecordValue(data.val)
				for _, q := range recordHistogramQuantiles {
					addExpected(reg.prefix, data.name+q.suffix, reg.source, 100, data.val, reg.isNode)
				}
			case "latency":
				l := metric.NewLatency(metric.Metadata{Name: reg.prefix + data.name})
				reg.reg.AddMetricGroup(l)
				l.RecordValue(data.val)
				// Latency is simply three histograms (at different resolution
				// time scales).
				for _, scale := range metric.DefaultTimeScales {
					for _, q := range recordHistogramQuantiles {
						addExpected(reg.prefix, data.name+sep+scale.Name()+q.suffix, reg.source, 100, data.val, reg.isNode)
					}
				}
			}
		}
	}

	// ========================================
	// Verify time series data
	// ========================================
	actual := recorder.GetTimeSeriesData()

	// Zero-out timing-sensitive rate values from actual data.
	for _, act := range actual {
		match, err := regexp.MatchString(`testRate-\d+m`, act.Name)
		if err != nil {
			t.Fatal(err)
		}
		if match {
			act.Datapoints[0].Value = 0.0
		}
	}

	// Actual comparison is simple: sort the resulting arrays by time and name,
	// and use reflect.DeepEqual.
	sort.Sort(byTimeAndName(actual))
	sort.Sort(byTimeAndName(expected))
	if a, e := actual, expected; !reflect.DeepEqual(a, e) {
		t.Errorf("recorder did not yield expected time series collection; diff:\n %v", pretty.Diff(e, a))
	}

	// ========================================
	// Verify node summary generation
	// ========================================
	expectedNodeSummary := &NodeStatus{
		Desc:      nodeDesc,
		BuildInfo: build.GetInfo(),
		StartedAt: 50,
		UpdatedAt: 100,
		Metrics:   expectedNodeSummaryMetrics,
		StoreStatuses: []StoreStatus{
			{
				Desc:    storeDesc1,
				Metrics: expectedStoreSummaryMetrics,
			},
			{
				Desc:    storeDesc2,
				Metrics: expectedStoreSummaryMetrics,
			},
		},
	}

	nodeSummary := recorder.GetStatusSummary()
	if nodeSummary == nil {
		t.Fatalf("recorder did not return nodeSummary.")
	}

	sort.Sort(byStoreDescID(nodeSummary.StoreStatuses))
	if a, e := nodeSummary, expectedNodeSummary; !reflect.DeepEqual(a, e) {
		t.Errorf("recorder did not produce expected NodeSummary; diff:\n %v", pretty.Diff(e, a))
	}
}