func checkVarValue(t *testing.T, prog *ssa.Program, pkg *ssa.Package, ref []ast.Node, obj *types.Var, expKind string, wantAddr bool) { // The prefix of all assertions messages. prefix := fmt.Sprintf("VarValue(%s @ L%d)", obj, prog.Fset.Position(ref[0].Pos()).Line) v, gotAddr := prog.VarValue(obj, pkg, ref) // Kind is the concrete type of the ssa Value. gotKind := "nil" if v != nil { gotKind = fmt.Sprintf("%T", v)[len("*ssa."):] } // fmt.Printf("%s = %v (kind %q; expect %q) wantAddr=%t gotAddr=%t\n", prefix, v, gotKind, expKind, wantAddr, gotAddr) // debugging // Check the kinds match. // "nil" indicates expected failure (e.g. optimized away). if expKind != gotKind { t.Errorf("%s concrete type == %s, want %s", prefix, gotKind, expKind) } // Check the types match. // If wantAddr, the expected type is the object's address. if v != nil { expType := obj.Type() if wantAddr { expType = types.NewPointer(expType) if !gotAddr { t.Errorf("%s: got value, want address", prefix) } } else if gotAddr { t.Errorf("%s: got address, want value", prefix) } if !types.Identical(v.Type(), expType) { t.Errorf("%s.Type() == %s, want %s", prefix, v.Type(), expType) } } }
// VarValue returns the SSA Value that corresponds to a specific // identifier denoting the source-level named variable obj. // // VarValue returns nil if a local variable was not found, perhaps // because its package was not built, the debug information was not // requested during SSA construction, or the value was optimized away. // // ref is the path to an ast.Ident (e.g. from PathEnclosingInterval), // and that ident must resolve to obj. // // pkg is the package enclosing the reference. (A reference to a var // always occurs within a function, so we need to know where to find it.) // // If the identifier is a field selector and its base expression is // non-addressable, then VarValue returns the value of that field. // For example: // func f() struct {x int} // f().x // VarValue(x) returns a *Field instruction of type int // // All other identifiers denote addressable locations (variables). // For them, VarValue may return either the variable's address or its // value, even when the expression is evaluated only for its value; the // situation is reported by isAddr, the second component of the result. // // If !isAddr, the returned value is the one associated with the // specific identifier. For example, // var x int // VarValue(x) returns Const 0 here // x = 1 // VarValue(x) returns Const 1 here // // It is not specified whether the value or the address is returned in // any particular case, as it may depend upon optimizations performed // during SSA code generation, such as registerization, constant // folding, avoidance of materialization of subexpressions, etc. // func (prog *Program) VarValue(obj *types.Var, pkg *Package, ref []ast.Node) (value Value, isAddr bool) { // All references to a var are local to some function, possibly init. fn := EnclosingFunction(pkg, ref) if fn == nil { return // e.g. def of struct field; SSA not built? } id := ref[0].(*ast.Ident) // Defining ident of a parameter? if id.Pos() == obj.Pos() { for _, param := range fn.Params { if param.Object() == obj { return param, false } } } // Other ident? for _, b := range fn.Blocks { for _, instr := range b.Instrs { if dr, ok := instr.(*DebugRef); ok { if dr.Pos() == id.Pos() { return dr.X, dr.IsAddr } } } } // Defining ident of package-level var? if v := prog.packageLevelValue(obj); v != nil { return v.(*Global), true } return // e.g. debug info not requested, or var optimized away }
// makeWrapper returns a synthetic method that delegates to the // declared method denoted by meth.Obj(), first performing any // necessary pointer indirections or field selections implied by meth. // // The resulting method's receiver type is meth.Recv(). // // This function is versatile but quite subtle! Consider the // following axes of variation when making changes: // - optional receiver indirection // - optional implicit field selections // - meth.Obj() may denote a concrete or an interface method // - the result may be a thunk or a wrapper. // // EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu) // func makeWrapper(prog *Program, sel *types.Selection) *Function { obj := sel.Obj().(*types.Func) // the declared function sig := sel.Type().(*types.Signature) // type of this wrapper var recv *types.Var // wrapper's receiver or thunk's params[0] name := obj.Name() var description string var start int // first regular param if sel.Kind() == types.MethodExpr { name += "$thunk" description = "thunk" recv = sig.Params().At(0) start = 1 } else { description = "wrapper" recv = sig.Recv() } description = fmt.Sprintf("%s for %s", description, sel.Obj()) if prog.mode&LogSource != 0 { defer logStack("make %s to (%s)", description, recv.Type())() } fn := &Function{ name: name, method: sel, object: obj, Signature: sig, Synthetic: description, Prog: prog, pos: obj.Pos(), } fn.startBody() fn.addSpilledParam(recv) createParams(fn, start) indices := sel.Index() var v Value = fn.Locals[0] // spilled receiver if isPointer(sel.Recv()) { v = emitLoad(fn, v) // For simple indirection wrappers, perform an informative nil-check: // "value method (T).f called using nil *T pointer" if len(indices) == 1 && !isPointer(recvType(obj)) { var c Call c.Call.Value = &Builtin{ name: "ssa:wrapnilchk", sig: types.NewSignature(nil, nil, types.NewTuple(anonVar(sel.Recv()), anonVar(tString), anonVar(tString)), types.NewTuple(anonVar(sel.Recv())), false), } c.Call.Args = []Value{ v, stringConst(deref(sel.Recv()).String()), stringConst(sel.Obj().Name()), } c.setType(v.Type()) v = fn.emit(&c) } } // Invariant: v is a pointer, either // value of *A receiver param, or // address of A spilled receiver. // We use pointer arithmetic (FieldAddr possibly followed by // Load) in preference to value extraction (Field possibly // preceded by Load). v = emitImplicitSelections(fn, v, indices[:len(indices)-1]) // Invariant: v is a pointer, either // value of implicit *C field, or // address of implicit C field. var c Call if r := recvType(obj); !isInterface(r) { // concrete method if !isPointer(r) { v = emitLoad(fn, v) } c.Call.Value = prog.declaredFunc(obj) c.Call.Args = append(c.Call.Args, v) } else { c.Call.Method = obj c.Call.Value = emitLoad(fn, v) } for _, arg := range fn.Params[1:] { c.Call.Args = append(c.Call.Args, arg) } emitTailCall(fn, &c) fn.finishBody() return fn }