// inferTypeFromDefault contains the logic for the old method of inferring // variable types - we can also use this for validating that the declared // type matches the type of the default value func (v *Variable) inferTypeFromDefault() VariableType { if v.Default == nil { return VariableTypeString } var s string if err := hilmapstructure.WeakDecode(v.Default, &s); err == nil { v.Default = s return VariableTypeString } var m map[string]interface{} if err := hilmapstructure.WeakDecode(v.Default, &m); err == nil { v.Default = m return VariableTypeMap } var l []interface{} if err := hilmapstructure.WeakDecode(v.Default, &l); err == nil { v.Default = l return VariableTypeList } return VariableTypeUnknown }
// TODO: test func (n *EvalVariableBlock) Eval(ctx EvalContext) (interface{}, error) { // Clear out the existing mapping for k, _ := range n.VariableValues { delete(n.VariableValues, k) } // Get our configuration rc := *n.Config for k, v := range rc.Config { var vString string if err := hilmapstructure.WeakDecode(v, &vString); err == nil { n.VariableValues[k] = vString continue } var vMap map[string]interface{} if err := hilmapstructure.WeakDecode(v, &vMap); err == nil { n.VariableValues[k] = vMap continue } var vSlice []interface{} if err := hilmapstructure.WeakDecode(v, &vSlice); err == nil { n.VariableValues[k] = vSlice continue } return nil, fmt.Errorf("Variable value for %s is not a string, list or map type", k) } for _, path := range rc.ComputedKeys { log.Printf("[DEBUG] Setting Unknown Variable Value for computed key: %s", path) err := n.setUnknownVariableValueForPath(path) if err != nil { return nil, err } } return nil, nil }
// TODO: test func (n *EvalVariableBlock) Eval(ctx EvalContext) (interface{}, error) { // Clear out the existing mapping for k, _ := range n.VariableValues { delete(n.VariableValues, k) } // Get our configuration rc := *n.Config for k, v := range rc.Config { var vString string if err := hilmapstructure.WeakDecode(v, &vString); err == nil { n.VariableValues[k] = vString continue } var vMap map[string]interface{} if err := hilmapstructure.WeakDecode(v, &vMap); err == nil { n.VariableValues[k] = vMap continue } var vSlice []interface{} if err := hilmapstructure.WeakDecode(v, &vSlice); err == nil { n.VariableValues[k] = vSlice continue } return nil, fmt.Errorf("Variable value for %s is not a string, list or map type", k) } for k, _ := range rc.Raw { if _, ok := n.VariableValues[k]; !ok { n.VariableValues[k] = config.UnknownVariableValue } } return nil, nil }
// Variables returns the fully loaded set of variables to use with // ContextOpts and NewContext, loading any additional variables from // the environment or any other sources. // // The given module tree doesn't need to be loaded. func Variables( m *module.Tree, override map[string]interface{}) (map[string]interface{}, error) { result := make(map[string]interface{}) // Variables are loaded in the following sequence. Each additional step // will override conflicting variable keys from prior steps: // // * Take default values from config // * Take values from TF_VAR_x env vars // * Take values specified in the "override" param which is usually // from -var, -var-file, etc. // // First load from the config for _, v := range m.Config().Variables { // If the var has no default, ignore if v.Default == nil { continue } // If the type isn't a string, we use it as-is since it is a rich type if v.Type() != config.VariableTypeString { result[v.Name] = v.Default continue } // v.Default has already been parsed as HCL but it may be an int type switch typedDefault := v.Default.(type) { case string: if typedDefault == "" { continue } result[v.Name] = typedDefault case int, int64: result[v.Name] = fmt.Sprintf("%d", typedDefault) case float32, float64: result[v.Name] = fmt.Sprintf("%f", typedDefault) case bool: result[v.Name] = fmt.Sprintf("%t", typedDefault) default: panic(fmt.Sprintf( "Unknown default var type: %T\n\n"+ "THIS IS A BUG. Please report it.", v.Default)) } } // Load from env vars for _, v := range os.Environ() { if !strings.HasPrefix(v, VarEnvPrefix) { continue } // Strip off the prefix and get the value after the first "=" idx := strings.Index(v, "=") k := v[len(VarEnvPrefix):idx] v = v[idx+1:] // Override the configuration-default values. Note that *not* finding the variable // in configuration is OK, as we don't want to preclude people from having multiple // sets of TF_VAR_whatever in their environment even if it is a little weird. for _, schema := range m.Config().Variables { if schema.Name != k { continue } varType := schema.Type() varVal, err := parseVariableAsHCL(k, v, varType) if err != nil { return nil, err } switch varType { case config.VariableTypeMap: varSetMap(result, k, varVal) default: result[k] = varVal } } } // Load from overrides for k, v := range override { for _, schema := range m.Config().Variables { if schema.Name != k { continue } switch schema.Type() { case config.VariableTypeList: result[k] = v case config.VariableTypeMap: varSetMap(result, k, v) case config.VariableTypeString: // Convert to a string and set. We don't catch any errors // here because the validation step later should catch // any type errors. var strVal string if err := hilmapstructure.WeakDecode(v, &strVal); err == nil { result[k] = strVal } else { result[k] = v } default: panic(fmt.Sprintf( "Unhandled var type: %T\n\n"+ "THIS IS A BUG. Please report it.", schema.Type())) } } } return result, nil }
// Validate does some basic semantic checking of the configuration. func (c *Config) Validate() error { if c == nil { return nil } var errs []error for _, k := range c.unknownKeys { errs = append(errs, fmt.Errorf( "Unknown root level key: %s", k)) } // Validate the Terraform config if tf := c.Terraform; tf != nil { if raw := tf.RequiredVersion; raw != "" { // Check that the value has no interpolations rc, err := NewRawConfig(map[string]interface{}{ "root": raw, }) if err != nil { errs = append(errs, fmt.Errorf( "terraform.required_version: %s", err)) } else if len(rc.Interpolations) > 0 { errs = append(errs, fmt.Errorf( "terraform.required_version: cannot contain interpolations")) } else { // Check it is valid _, err := version.NewConstraint(raw) if err != nil { errs = append(errs, fmt.Errorf( "terraform.required_version: invalid syntax: %s", err)) } } } } vars := c.InterpolatedVariables() varMap := make(map[string]*Variable) for _, v := range c.Variables { if _, ok := varMap[v.Name]; ok { errs = append(errs, fmt.Errorf( "Variable '%s': duplicate found. Variable names must be unique.", v.Name)) } varMap[v.Name] = v } for k, _ := range varMap { if !NameRegexp.MatchString(k) { errs = append(errs, fmt.Errorf( "variable %q: variable name must match regular expresion %s", k, NameRegexp)) } } for _, v := range c.Variables { if v.Type() == VariableTypeUnknown { errs = append(errs, fmt.Errorf( "Variable '%s': must be a string or a map", v.Name)) continue } interp := false fn := func(ast.Node) (interface{}, error) { interp = true return "", nil } w := &interpolationWalker{F: fn} if v.Default != nil { if err := reflectwalk.Walk(v.Default, w); err == nil { if interp { errs = append(errs, fmt.Errorf( "Variable '%s': cannot contain interpolations", v.Name)) } } } } // Check for references to user variables that do not actually // exist and record those errors. for source, vs := range vars { for _, v := range vs { uv, ok := v.(*UserVariable) if !ok { continue } if _, ok := varMap[uv.Name]; !ok { errs = append(errs, fmt.Errorf( "%s: unknown variable referenced: '%s'. define it with 'variable' blocks", source, uv.Name)) } } } // Check that all count variables are valid. for source, vs := range vars { for _, rawV := range vs { switch v := rawV.(type) { case *CountVariable: if v.Type == CountValueInvalid { errs = append(errs, fmt.Errorf( "%s: invalid count variable: %s", source, v.FullKey())) } case *PathVariable: if v.Type == PathValueInvalid { errs = append(errs, fmt.Errorf( "%s: invalid path variable: %s", source, v.FullKey())) } } } } // Check that providers aren't declared multiple times. providerSet := make(map[string]struct{}) for _, p := range c.ProviderConfigs { name := p.FullName() if _, ok := providerSet[name]; ok { errs = append(errs, fmt.Errorf( "provider.%s: declared multiple times, you can only declare a provider once", name)) continue } providerSet[name] = struct{}{} } // Check that all references to modules are valid modules := make(map[string]*Module) dupped := make(map[string]struct{}) for _, m := range c.Modules { // Check for duplicates if _, ok := modules[m.Id()]; ok { if _, ok := dupped[m.Id()]; !ok { dupped[m.Id()] = struct{}{} errs = append(errs, fmt.Errorf( "%s: module repeated multiple times", m.Id())) } // Already seen this module, just skip it continue } modules[m.Id()] = m // Check that the source has no interpolations rc, err := NewRawConfig(map[string]interface{}{ "root": m.Source, }) if err != nil { errs = append(errs, fmt.Errorf( "%s: module source error: %s", m.Id(), err)) } else if len(rc.Interpolations) > 0 { errs = append(errs, fmt.Errorf( "%s: module source cannot contain interpolations", m.Id())) } // Check that the name matches our regexp if !NameRegexp.Match([]byte(m.Name)) { errs = append(errs, fmt.Errorf( "%s: module name can only contain letters, numbers, "+ "dashes, and underscores", m.Id())) } // Check that the configuration can all be strings, lists or maps raw := make(map[string]interface{}) for k, v := range m.RawConfig.Raw { var strVal string if err := hilmapstructure.WeakDecode(v, &strVal); err == nil { raw[k] = strVal continue } var mapVal map[string]interface{} if err := hilmapstructure.WeakDecode(v, &mapVal); err == nil { raw[k] = mapVal continue } var sliceVal []interface{} if err := hilmapstructure.WeakDecode(v, &sliceVal); err == nil { raw[k] = sliceVal continue } errs = append(errs, fmt.Errorf( "%s: variable %s must be a string, list or map value", m.Id(), k)) } // Check for invalid count variables for _, v := range m.RawConfig.Variables { switch v.(type) { case *CountVariable: errs = append(errs, fmt.Errorf( "%s: count variables are only valid within resources", m.Name)) case *SelfVariable: errs = append(errs, fmt.Errorf( "%s: self variables are only valid within resources", m.Name)) } } // Update the raw configuration to only contain the string values m.RawConfig, err = NewRawConfig(raw) if err != nil { errs = append(errs, fmt.Errorf( "%s: can't initialize configuration: %s", m.Id(), err)) } } dupped = nil // Check that all variables for modules reference modules that // exist. for source, vs := range vars { for _, v := range vs { mv, ok := v.(*ModuleVariable) if !ok { continue } if _, ok := modules[mv.Name]; !ok { errs = append(errs, fmt.Errorf( "%s: unknown module referenced: %s", source, mv.Name)) } } } // Check that all references to resources are valid resources := make(map[string]*Resource) dupped = make(map[string]struct{}) for _, r := range c.Resources { if _, ok := resources[r.Id()]; ok { if _, ok := dupped[r.Id()]; !ok { dupped[r.Id()] = struct{}{} errs = append(errs, fmt.Errorf( "%s: resource repeated multiple times", r.Id())) } } resources[r.Id()] = r } dupped = nil // Validate resources for n, r := range resources { // Verify count variables for _, v := range r.RawCount.Variables { switch v.(type) { case *CountVariable: errs = append(errs, fmt.Errorf( "%s: resource count can't reference count variable: %s", n, v.FullKey())) case *ModuleVariable: errs = append(errs, fmt.Errorf( "%s: resource count can't reference module variable: %s", n, v.FullKey())) case *ResourceVariable: errs = append(errs, fmt.Errorf( "%s: resource count can't reference resource variable: %s", n, v.FullKey())) case *SimpleVariable: errs = append(errs, fmt.Errorf( "%s: resource count can't reference variable: %s", n, v.FullKey())) case *UserVariable: // Good default: panic(fmt.Sprintf("Unknown type in count var in %s: %T", n, v)) } } // Interpolate with a fixed number to verify that its a number. r.RawCount.interpolate(func(root ast.Node) (interface{}, error) { // Execute the node but transform the AST so that it returns // a fixed value of "5" for all interpolations. result, err := hil.Eval( hil.FixedValueTransform( root, &ast.LiteralNode{Value: "5", Typex: ast.TypeString}), nil) if err != nil { return "", err } return result.Value, nil }) _, err := strconv.ParseInt(r.RawCount.Value().(string), 0, 0) if err != nil { errs = append(errs, fmt.Errorf( "%s: resource count must be an integer", n)) } r.RawCount.init() // Validate DependsOn errs = append(errs, c.validateDependsOn(n, r.DependsOn, resources, modules)...) // Verify provisioners don't contain any splats for _, p := range r.Provisioners { // This validation checks that there are now splat variables // referencing ourself. This currently is not allowed. for _, v := range p.ConnInfo.Variables { rv, ok := v.(*ResourceVariable) if !ok { continue } if rv.Multi && rv.Index == -1 && rv.Type == r.Type && rv.Name == r.Name { errs = append(errs, fmt.Errorf( "%s: connection info cannot contain splat variable "+ "referencing itself", n)) break } } for _, v := range p.RawConfig.Variables { rv, ok := v.(*ResourceVariable) if !ok { continue } if rv.Multi && rv.Index == -1 && rv.Type == r.Type && rv.Name == r.Name { errs = append(errs, fmt.Errorf( "%s: connection info cannot contain splat variable "+ "referencing itself", n)) break } } } // Verify ignore_changes contains valid entries for _, v := range r.Lifecycle.IgnoreChanges { if strings.Contains(v, "*") && v != "*" { errs = append(errs, fmt.Errorf( "%s: ignore_changes does not support using a partial string "+ "together with a wildcard: %s", n, v)) } } // Verify ignore_changes has no interpolations rc, err := NewRawConfig(map[string]interface{}{ "root": r.Lifecycle.IgnoreChanges, }) if err != nil { errs = append(errs, fmt.Errorf( "%s: lifecycle ignore_changes error: %s", n, err)) } else if len(rc.Interpolations) > 0 { errs = append(errs, fmt.Errorf( "%s: lifecycle ignore_changes cannot contain interpolations", n)) } // If it is a data source then it can't have provisioners if r.Mode == DataResourceMode { if _, ok := r.RawConfig.Raw["provisioner"]; ok { errs = append(errs, fmt.Errorf( "%s: data sources cannot have provisioners", n)) } } } for source, vs := range vars { for _, v := range vs { rv, ok := v.(*ResourceVariable) if !ok { continue } id := rv.ResourceId() if _, ok := resources[id]; !ok { errs = append(errs, fmt.Errorf( "%s: unknown resource '%s' referenced in variable %s", source, id, rv.FullKey())) continue } } } // Check that all outputs are valid { found := make(map[string]struct{}) for _, o := range c.Outputs { // Verify the output is new if _, ok := found[o.Name]; ok { errs = append(errs, fmt.Errorf( "%s: duplicate output. output names must be unique.", o.Name)) continue } found[o.Name] = struct{}{} var invalidKeys []string valueKeyFound := false for k := range o.RawConfig.Raw { if k == "value" { valueKeyFound = true continue } if k == "sensitive" { if sensitive, ok := o.RawConfig.config[k].(bool); ok { if sensitive { o.Sensitive = true } continue } errs = append(errs, fmt.Errorf( "%s: value for 'sensitive' must be boolean", o.Name)) continue } if k == "description" { if desc, ok := o.RawConfig.config[k].(string); ok { o.Description = desc continue } errs = append(errs, fmt.Errorf( "%s: value for 'description' must be string", o.Name)) continue } invalidKeys = append(invalidKeys, k) } if len(invalidKeys) > 0 { errs = append(errs, fmt.Errorf( "%s: output has invalid keys: %s", o.Name, strings.Join(invalidKeys, ", "))) } if !valueKeyFound { errs = append(errs, fmt.Errorf( "%s: output is missing required 'value' key", o.Name)) } for _, v := range o.RawConfig.Variables { if _, ok := v.(*CountVariable); ok { errs = append(errs, fmt.Errorf( "%s: count variables are only valid within resources", o.Name)) } } } } // Check that all variables are in the proper context for source, rc := range c.rawConfigs() { walker := &interpolationWalker{ ContextF: c.validateVarContextFn(source, &errs), } if err := reflectwalk.Walk(rc.Raw, walker); err != nil { errs = append(errs, fmt.Errorf( "%s: error reading config: %s", source, err)) } } // Validate the self variable for source, rc := range c.rawConfigs() { // Ignore provisioners. This is a pretty brittle way to do this, // but better than also repeating all the resources. if strings.Contains(source, "provision") { continue } for _, v := range rc.Variables { if _, ok := v.(*SelfVariable); ok { errs = append(errs, fmt.Errorf( "%s: cannot contain self-reference %s", source, v.FullKey())) } } } if len(errs) > 0 { return &multierror.Error{Errors: errs} } return nil }