// In-place version of pack(), which also accepts matrix arguments x. // The columns of x are elements of S, with the 's' components stored // in unpacked storage. On return, the 's' components are stored in // packed storage and the off-diagonal entries are scaled by sqrt(2). // func pack2(x *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (err error) { if len(dims.At("s")) == 0 { return nil } const sqrt2 = 1.41421356237309504880 iu := mnl + dims.Sum("l", "q") ip := iu row := matrix.FloatZeros(1, x.Cols()) //fmt.Printf("x.size = %d %d\n", x.Rows(), x.Cols()) for _, n := range dims.At("s") { for k := 0; k < n; k++ { cnt := n - k row = x.GetRow(iu+(n+1)*k, row) //fmt.Printf("%02d: %v\n", iu+(n+1)*k, x.FloatArray()) x.SetRow(ip, row) for i := 1; i < n-k; i++ { row = x.GetRow(iu+(n+1)*k+i, row) //fmt.Printf("%02d: %v\n", iu+(n+1)*k+i, x.FloatArray()) x.SetRow(ip+i, row.Scale(sqrt2)) } ip += cnt } iu += n * n } return nil }
/* Matrix-vector multiplication. A is a matrix or spmatrix of size (m, n) where N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ) representing a mapping from R^n to S. If trans is 'N': y := alpha*A*x + beta * y (trans = 'N'). x is a vector of length n. y is a vector of length N. If trans is 'T': y := alpha*A'*x + beta * y (trans = 'T'). x is a vector of length N. y is a vector of length n. The 's' components in S are stored in unpacked 'L' storage. */ func sgemv(A, x, y *matrix.FloatMatrix, alpha, beta float64, dims *sets.DimensionSet, opts ...la_.Option) error { m := dims.Sum("l", "q") + dims.SumSquared("s") n := la_.GetIntOpt("n", -1, opts...) if n == -1 { n = A.Cols() } trans := la_.GetIntOpt("trans", int(la_.PNoTrans), opts...) offsetX := la_.GetIntOpt("offsetx", 0, opts...) offsetY := la_.GetIntOpt("offsety", 0, opts...) offsetA := la_.GetIntOpt("offseta", 0, opts...) if trans == int(la_.PTrans) && alpha != 0.0 { trisc(x, dims, offsetX) //fmt.Printf("trisc x=\n%v\n", x.ConvertToString()) } //fmt.Printf("alpha=%.4f beta=%.4f m=%d n=%d\n", alpha, beta, m, n) //fmt.Printf("A=\n%v\nx=\n%v\ny=\n%v\n", A, x.ConvertToString(), y.ConvertToString()) err := blas.GemvFloat(A, x, y, alpha, beta, &la_.IOpt{"trans", trans}, &la_.IOpt{"n", n}, &la_.IOpt{"m", m}, &la_.IOpt{"offseta", offsetA}, &la_.IOpt{"offsetx", offsetX}, &la_.IOpt{"offsety", offsetY}) //fmt.Printf("gemv y=\n%v\n", y.ConvertToString()) if trans == int(la_.PTrans) && alpha != 0.0 { triusc(x, dims, offsetX) } return err }
/* Copy x to y using packed storage. The vector x is an element of S, with the 's' components stored in unpacked storage. On return, x is copied to y with the 's' components stored in packed storage and the off-diagonal entries scaled by sqrt(2). */ func pack(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, opts ...la_.Option) (err error) { /*DEBUGGED*/ err = nil mnl := la_.GetIntOpt("mnl", 0, opts...) offsetx := la_.GetIntOpt("offsetx", 0, opts...) offsety := la_.GetIntOpt("offsety", 0, opts...) nlq := mnl + dims.At("l")[0] + dims.Sum("q") blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx}, &la_.IOpt{"offsety", offsety}) iu, ip := offsetx+nlq, offsety+nlq for _, n := range dims.At("s") { for k := 0; k < n; k++ { blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", iu + k*(n+1)}, &la_.IOpt{"offsety", ip}) y.SetIndex(ip, (y.GetIndex(ip) / math.Sqrt(2.0))) ip += n - k } iu += n * n } np := dims.SumPacked("s") blas.ScalFloat(y, math.Sqrt(2.0), &la_.IOpt{"n", np}, &la_.IOpt{"offset", offsety + nlq}) return }
// Returns min {t | x + t*e >= 0}, where e is defined as follows // // - For the nonlinear and 'l' blocks: e is the vector of ones. // - For the 'q' blocks: e is the first unit vector. // - For the 's' blocks: e is the identity matrix. // // When called with the argument sigma, also returns the eigenvalues // (in sigma) and the eigenvectors (in x) of the 's' components of x. func maxStep(x *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int, sigma *matrix.FloatMatrix) (rval float64, err error) { /*DEBUGGED*/ rval = 0.0 err = nil t := make([]float64, 0, 10) ind := mnl + dims.Sum("l") if ind > 0 { t = append(t, -minvec(x.FloatArray()[:ind])) } for _, m := range dims.At("q") { if m > 0 { v := blas.Nrm2Float(x, &la_.IOpt{"offset", ind + 1}, &la_.IOpt{"n", m - 1}) v -= x.GetIndex(ind) t = append(t, v) } ind += m } //var Q *matrix.FloatMatrix //var w *matrix.FloatMatrix ind2 := 0 //if sigma == nil && len(dims.At("s")) > 0 { // mx := dims.Max("s") // Q = matrix.FloatZeros(mx, mx) // w = matrix.FloatZeros(mx, 1) //} for _, m := range dims.At("s") { if sigma == nil { Q := matrix.FloatZeros(m, m) w := matrix.FloatZeros(m, 1) blas.Copy(x, Q, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m * m}) err = lapack.SyevrFloat(Q, w, nil, 0.0, nil, []int{1, 1}, la_.OptRangeInt, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}) if m > 0 && err == nil { t = append(t, -w.GetIndex(0)) } } else { err = lapack.SyevdFloat(x, sigma, la_.OptJobZValue, &la_.IOpt{"n", m}, &la_.IOpt{"lda", m}, &la_.IOpt{"offseta", ind}, &la_.IOpt{"offsetw", ind2}) if m > 0 { t = append(t, -sigma.GetIndex(ind2)) } } ind += m * m ind2 += m } if len(t) > 0 { rval = maxvec(t) } return }
/* Scales the strictly lower triangular part of the 's' components of x by 0.5. */ func triusc(x *matrix.FloatMatrix, dims *sets.DimensionSet, offset int) error { //m := dims.Sum("l", "q") + dims.SumSquared("s") ind := offset + dims.Sum("l", "q") for _, mk := range dims.At("s") { for j := 1; j < mk; j++ { blas.ScalFloat(x, 0.5, &la_.IOpt{"n", mk - j}, &la_.IOpt{"offset", ind + mk*(j-1) + j}) } ind += mk * mk } return nil }
// Inner product of two vectors in S. func sdot(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) float64 { /*DEBUGGED*/ ind := mnl + dims.At("l")[0] + dims.Sum("q") a := blas.DotFloat(x, y, &la_.IOpt{"n", ind}) for _, m := range dims.At("s") { a += blas.DotFloat(x, y, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind}, &la_.IOpt{"incx", m + 1}, &la_.IOpt{"incy", m + 1}, &la_.IOpt{"n", m}) for j := 1; j < m; j++ { a += 2.0 * blas.DotFloat(x, y, &la_.IOpt{"offsetx", ind + j}, &la_.IOpt{"offsety", ind + j}, &la_.IOpt{"incx", m + 1}, &la_.IOpt{"incy", m + 1}, &la_.IOpt{"n", m - j}) } ind += m * m } return a }
/* Sets upper triangular part of the 's' components of x equal to zero and scales the strictly lower triangular part by 2.0. */ func trisc(x *matrix.FloatMatrix, dims *sets.DimensionSet, offset int) error { //m := dims.Sum("l", "q") + dims.SumSquared("s") ind := offset + dims.Sum("l", "q") for _, mk := range dims.At("s") { for j := 1; j < mk; j++ { blas.ScalFloat(x, 0.0, la_.IntOpt("n", mk-j), la_.IntOpt("inc", mk), la_.IntOpt("offset", ind+j*(mk+1)-1)) blas.ScalFloat(x, 2.0, la_.IntOpt("n", mk-j), la_.IntOpt("offset", ind+mk*(j-1)+j)) } ind += mk * mk } return nil }
// Here problem is already translated to epigraph format except original convex problem. // We wrap it and create special CP epigraph kktsolver. func cp_problem(F ConvexProg, c MatrixVariable, G MatrixVarG, h *matrix.FloatMatrix, A MatrixVarA, b MatrixVariable, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions, x0 *matrix.FloatMatrix, mnl int) (sol *Solution, err error) { err = nil F_e := &cpProg{F} //mx0 := newEpigraph(x0, 0.0) cdim := dims.Sum("l", "q") + dims.SumSquared("s") ux := x0.Copy() uz := matrix.FloatZeros(mnl+cdim, 1) kktsolver_e := func(W *sets.FloatMatrixSet, xa MatrixVariable, znl *matrix.FloatMatrix) (KKTFuncVar, error) { x, x_ok := xa.(*epigraph) _ = x_ok We := W.Copy() // dnl is matrix dnl := W.At("dnl")[0] dnli := W.At("dnli")[0] We.Set("dnl", matrix.FloatVector(dnl.FloatArray()[1:])) We.Set("dnli", matrix.FloatVector(dnli.FloatArray()[1:])) g, err := kktsolver(We, x.m(), znl) _, Df, _ := F.F1(x.m()) gradf0 := Df.GetRow(0, nil).Transpose() solve := func(xa, ya MatrixVariable, z *matrix.FloatMatrix) (err error) { x, x_ok := xa.(*epigraph) _ = x_ok // TODO: remove or use x_ok y := ya.Matrix() err = nil a := z.GetIndex(0) blas.Copy(x.m(), ux) blas.AxpyFloat(gradf0, ux, x.t()) blas.Copy(z, uz, &la.IOpt{"offsetx", 1}) err = g(ux, y, uz) z.SetIndex(0, -x.t()*dnl.GetIndex(0)) blas.Copy(uz, z, &la.IOpt{"offsety", 1}) blas.Copy(ux, x.m()) val := blas.DotFloat(gradf0, x.m()) + dnl.GetIndex(0)*dnl.GetIndex(0)*x.t() - a x.set(val) return } return solve, err } return cpl_solver(F_e, c, G, h, A, b, dims, kktsolver_e, solopts, nil, mnl) }
// The product x := y o y. The 's' components of y are diagonal and // only the diagonals of x and y are stored. func ssqr(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (err error) { /*DEBUGGED*/ blas.Copy(y, x) ind := mnl + dims.At("l")[0] err = blas.Tbmv(y, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) if err != nil { return } for _, m := range dims.At("q") { v := blas.Nrm2Float(y, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) x.SetIndex(ind, v*v) blas.ScalFloat(x, 2.0*y.GetIndex(ind), &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1}) ind += m } err = blas.Tbmv(y, x, &la_.IOpt{"n", dims.Sum("s")}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", ind}, &la_.IOpt{"offsetx", ind}) return }
/* The vector x is an element of S, with the 's' components stored in unpacked storage and off-diagonal entries scaled by sqrt(2). On return, x is copied to y with the 's' components stored in unpacked storage. */ func unpack(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, opts ...la_.Option) (err error) { /*DEBUGGED*/ err = nil mnl := la_.GetIntOpt("mnl", 0, opts...) offsetx := la_.GetIntOpt("offsetx", 0, opts...) offsety := la_.GetIntOpt("offsety", 0, opts...) nlq := mnl + dims.At("l")[0] + dims.Sum("q") err = blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx}, &la_.IOpt{"offsety", offsety}) if err != nil { return } ip, iu := offsetx+nlq, offsety+nlq for _, n := range dims.At("s") { for k := 0; k < n; k++ { err = blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", ip}, &la_.IOpt{"offsety", iu + k*(n+1)}) if err != nil { return } ip += n - k blas.ScalFloat(y, 1.0/math.Sqrt(2.0), &la_.IOpt{"n", n - k - 1}, &la_.IOpt{"offset", iu + k*(n+1) + 1}) } iu += n * n } /* nu := dims.SumSquared("s") fmt.Printf("-- UnPack: nu=%d, offset=%d\n", nu, offsety+nlq) err = blas.ScalFloat(y, &la_.IOpt{"n", nu}, &la_.IOpt{"offset", offsety+nlq}) */ return }
// Solves a convex optimization problem with a linear objective // // minimize f0(x) // subject to fk(x) <= 0, k = 1, ..., mnl // G*x <= h // A*x = b. // // using custom solver for KKT equations. // func CpCustomKKT(F ConvexProg, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, x0.Rows()) } if !G.SizeMatch(cdim, x0.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, x0.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, x0.Rows()) } if A.Cols() != x0.Rows() { estr := fmt.Sprintf("'A' must have %d columns", x0.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if kktsolver == nil { err = errors.New("'kktsolver' must be non-nil function.") return } c_e := newEpigraph(x0, 1.0) blas.ScalFloat(x0, 0.0) G_e := epMatrixG{G, dims} A_e := epMatrixA{A} b_e := matrixVar{b} return cp_problem(F, c_e, &G_e, h, &A_e, &b_e, dims, kktsolver, solopts, x0, mnl) }
// Solution of KKT equations by reduction to a 2 x 2 system, a QR // factorization to eliminate the equality constraints, and a dense // Cholesky factorization of order n-p. // // Computes the QR factorization // // A' = [Q1, Q2] * [R; 0] // // and returns a function that (1) computes the Cholesky factorization // // Q_2^T * (H + GG^T * W^{-1} * W^{-T} * GG) * Q2 = L * L^T, // // given H, Df, W, where GG = [Df; G], and (2) returns a function for // solving // // [ H A' GG' ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy ] = [ by ]. // [ GG 0 -W'*W ] [ uz ] [ bz ] // // H is n x n, A is p x n, Df is mnl x n, G is N x n where // N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ). // func kktChol(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) { p, n := A.Size() cdim := mnl + dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := mnl + dims.Sum("l", "q") + dims.SumPacked("s") QA := A.Transpose() tauA := matrix.FloatZeros(p, 1) lapack.Geqrf(QA, tauA) Gs := matrix.FloatZeros(cdim, n) K := matrix.FloatZeros(n, n) bzp := matrix.FloatZeros(cdim_pckd, 1) yy := matrix.FloatZeros(p, 1) checkpnt.AddMatrixVar("tauA", tauA) checkpnt.AddMatrixVar("Gs", Gs) checkpnt.AddMatrixVar("K", K) factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) { // Compute // // K = [Q1, Q2]' * (H + GG' * W^{-1} * W^{-T} * GG) * [Q1, Q2] // // and take the Cholesky factorization of the 2,2 block // // Q_2' * (H + GG^T * W^{-1} * W^{-T} * GG) * Q2. var err error = nil minor := 0 if !checkpnt.MinorEmpty() { minor = checkpnt.MinorTop() } // Gs = W^{-T} * GG in packed storage. if mnl > 0 { Gs.SetSubMatrix(0, 0, Df) } Gs.SetSubMatrix(mnl, 0, G) checkpnt.Check("00factor_chol", minor) scale(Gs, W, true, true) pack2(Gs, dims, mnl) //checkpnt.Check("10factor_chol", minor) // K = [Q1, Q2]' * (H + Gs' * Gs) * [Q1, Q2]. blas.SyrkFloat(Gs, K, 1.0, 0.0, la.OptTrans, &la.IOpt{"k", cdim_pckd}) if H != nil { K.SetSubMatrix(0, 0, matrix.Plus(H, K.GetSubMatrix(0, 0, H.Rows(), H.Cols()))) } //checkpnt.Check("20factor_chol", minor) symm(K, n, 0) lapack.Ormqr(QA, tauA, K, la.OptLeft, la.OptTrans) lapack.Ormqr(QA, tauA, K, la.OptRight) //checkpnt.Check("30factor_chol", minor) // Cholesky factorization of 2,2 block of K. lapack.Potrf(K, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", p * (n + 1)}) checkpnt.Check("40factor_chol", minor) solve := func(x, y, z *matrix.FloatMatrix) (err error) { // Solve // // [ 0 A' GG'*W^{-1} ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy ] = [ by ] // [ W^{-T}*GG 0 -I ] [ W*uz ] [ W^{-T}*bz ] // // and return ux, uy, W*uz. // // On entry, x, y, z contain bx, by, bz. On exit, they contain // the solution ux, uy, W*uz. // // If we change variables ux = Q1*v + Q2*w, the system becomes // // [ K11 K12 R ] [ v ] [Q1'*(bx+GG'*W^{-1}*W^{-T}*bz)] // [ K21 K22 0 ] * [ w ] = [Q2'*(bx+GG'*W^{-1}*W^{-T}*bz)] // [ R^T 0 0 ] [ uy ] [by ] // // W*uz = W^{-T} * ( GG*ux - bz ). minor := 0 if !checkpnt.MinorEmpty() { minor = checkpnt.MinorTop() } // bzp := W^{-T} * bz in packed storage scale(z, W, true, true) pack(z, bzp, dims, &la.IOpt{"mnl", mnl}) // x := [Q1, Q2]' * (x + Gs' * bzp) // = [Q1, Q2]' * (bx + Gs' * W^{-T} * bz) blas.GemvFloat(Gs, bzp, x, 1.0, 1.0, la.OptTrans, &la.IOpt{"m", cdim_pckd}) lapack.Ormqr(QA, tauA, x, la.OptLeft, la.OptTrans) // y := x[:p] // = Q1' * (bx + Gs' * W^{-T} * bz) blas.Copy(y, yy) blas.Copy(x, y, &la.IOpt{"n", p}) // x[:p] := v = R^{-T} * by blas.Copy(yy, x) lapack.Trtrs(QA, x, la.OptUpper, la.OptTrans, &la.IOpt{"n", p}) // x[p:] := K22^{-1} * (x[p:] - K21*x[:p]) // = K22^{-1} * (Q2' * (bx + Gs' * W^{-T} * bz) - K21*v) blas.GemvFloat(K, x, x, -1.0, 1.0, &la.IOpt{"m", n - p}, &la.IOpt{"n", p}, &la.IOpt{"offseta", p}, &la.IOpt{"offsety", p}) lapack.Potrs(K, x, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", p * (n + 1)}, &la.IOpt{"offsetb", p}) // y := y - [K11, K12] * x // = Q1' * (bx + Gs' * W^{-T} * bz) - K11*v - K12*w blas.GemvFloat(K, x, y, -1.0, 1.0, &la.IOpt{"m", p}, &la.IOpt{"n", n}) // y := R^{-1}*y // = R^{-1} * (Q1' * (bx + Gs' * W^{-T} * bz) - K11*v // - K12*w) lapack.Trtrs(QA, y, la.OptUpper, &la.IOpt{"n", p}) // x := [Q1, Q2] * x lapack.Ormqr(QA, tauA, x, la.OptLeft) // bzp := Gs * x - bzp. // = W^{-T} * ( GG*ux - bz ) in packed storage. // Unpack and copy to z. blas.GemvFloat(Gs, x, bzp, 1.0, -1.0, &la.IOpt{"m", cdim_pckd}) unpack(bzp, z, dims, &la.IOpt{"mnl", mnl}) checkpnt.Check("90solve_chol", minor) return nil } return solve, err } return factor, nil }
// Internal CPL solver for CP and CLP problems. Everything is wrapped to proper interfaces func cpl_solver(F ConvexVarProg, c MatrixVariable, G MatrixVarG, h *matrix.FloatMatrix, A MatrixVarA, b MatrixVariable, dims *sets.DimensionSet, kktsolver KKTCpSolverVar, solopts *SolverOptions, x0 MatrixVariable, mnl int) (sol *Solution, err error) { const ( STEP = 0.99 BETA = 0.5 ALPHA = 0.01 EXPON = 3 MAX_RELAXED_ITERS = 8 ) var refinement int sol = &Solution{Unknown, nil, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0} feasTolerance := FEASTOL absTolerance := ABSTOL relTolerance := RELTOL maxIter := MAXITERS if solopts.FeasTol > 0.0 { feasTolerance = solopts.FeasTol } if solopts.AbsTol > 0.0 { absTolerance = solopts.AbsTol } if solopts.RelTol > 0.0 { relTolerance = solopts.RelTol } if solopts.Refinement > 0 { refinement = solopts.Refinement } else { refinement = 1 } if solopts.MaxIter > 0 { maxIter = solopts.MaxIter } if x0 == nil { mnl, x0, err = F.F0() if err != nil { return } } if c == nil { err = errors.New("Must define objective.") return } if h == nil { h = matrix.FloatZeros(0, 1) } if dims == nil { err = errors.New("Problem dimensions not defined.") return } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { err = errors.New("'G' must be non-nil MatrixG interface.") return } fG := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error { return G.Gf(x, y, alpha, beta, trans) } // Check A and set defaults if it is nil if A == nil { err = errors.New("'A' must be non-nil MatrixA interface.") return } fA := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error { return A.Af(x, y, alpha, beta, trans) } if b == nil { err = errors.New("'b' must be non-nil MatrixVariable interface.") return } if kktsolver == nil { err = errors.New("nil kktsolver not allowed.") return } x := x0.Copy() y := b.Copy() y.Scal(0.0) z := matrix.FloatZeros(mnl+cdim, 1) s := matrix.FloatZeros(mnl+cdim, 1) ind := mnl + dims.At("l")[0] z.SetIndexes(1.0, matrix.MakeIndexSet(0, ind, 1)...) s.SetIndexes(1.0, matrix.MakeIndexSet(0, ind, 1)...) for _, m := range dims.At("q") { z.SetIndexes(1.0, ind) s.SetIndexes(1.0, ind) ind += m } for _, m := range dims.At("s") { iset := matrix.MakeIndexSet(ind, ind+m*m, m+1) z.SetIndexes(1.0, iset...) s.SetIndexes(1.0, iset...) ind += m * m } rx := x0.Copy() ry := b.Copy() dx := x.Copy() dy := y.Copy() rznl := matrix.FloatZeros(mnl, 1) rzl := matrix.FloatZeros(cdim, 1) dz := matrix.FloatZeros(mnl+cdim, 1) ds := matrix.FloatZeros(mnl+cdim, 1) lmbda := matrix.FloatZeros(mnl+cdim_diag, 1) lmbdasq := matrix.FloatZeros(mnl+cdim_diag, 1) sigs := matrix.FloatZeros(dims.Sum("s"), 1) sigz := matrix.FloatZeros(dims.Sum("s"), 1) dz2 := matrix.FloatZeros(mnl+cdim, 1) ds2 := matrix.FloatZeros(mnl+cdim, 1) newx := x.Copy() newy := y.Copy() newrx := x0.Copy() newz := matrix.FloatZeros(mnl+cdim, 1) news := matrix.FloatZeros(mnl+cdim, 1) newrznl := matrix.FloatZeros(mnl, 1) rx0 := rx.Copy() ry0 := ry.Copy() rznl0 := matrix.FloatZeros(mnl, 1) rzl0 := matrix.FloatZeros(cdim, 1) x0, dx0 := x.Copy(), dx.Copy() y0, dy0 := y.Copy(), dy.Copy() z0 := matrix.FloatZeros(mnl+cdim, 1) dz0 := matrix.FloatZeros(mnl+cdim, 1) dz20 := matrix.FloatZeros(mnl+cdim, 1) s0 := matrix.FloatZeros(mnl+cdim, 1) ds0 := matrix.FloatZeros(mnl+cdim, 1) ds20 := matrix.FloatZeros(mnl+cdim, 1) checkpnt.AddMatrixVar("z", z) checkpnt.AddMatrixVar("s", s) checkpnt.AddMatrixVar("dz", dz) checkpnt.AddMatrixVar("ds", ds) checkpnt.AddMatrixVar("rznl", rznl) checkpnt.AddMatrixVar("rzl", rzl) checkpnt.AddMatrixVar("lmbda", lmbda) checkpnt.AddMatrixVar("lmbdasq", lmbdasq) checkpnt.AddMatrixVar("z0", z0) checkpnt.AddMatrixVar("dz0", dz0) checkpnt.AddVerifiable("c", c) checkpnt.AddVerifiable("x", x) checkpnt.AddVerifiable("rx", rx) checkpnt.AddVerifiable("dx", dx) checkpnt.AddVerifiable("newrx", newrx) checkpnt.AddVerifiable("newx", newx) checkpnt.AddVerifiable("x0", x0) checkpnt.AddVerifiable("dx0", dx0) checkpnt.AddVerifiable("rx0", rx0) checkpnt.AddVerifiable("y", y) checkpnt.AddVerifiable("dy", dy) W0 := sets.NewFloatSet("d", "di", "dnl", "dnli", "v", "r", "rti", "beta") W0.Set("dnl", matrix.FloatZeros(mnl, 1)) W0.Set("dnli", matrix.FloatZeros(mnl, 1)) W0.Set("d", matrix.FloatZeros(dims.At("l")[0], 1)) W0.Set("di", matrix.FloatZeros(dims.At("l")[0], 1)) W0.Set("beta", matrix.FloatZeros(len(dims.At("q")), 1)) for _, n := range dims.At("q") { W0.Append("v", matrix.FloatZeros(n, 1)) } for _, n := range dims.At("s") { W0.Append("r", matrix.FloatZeros(n, n)) W0.Append("rti", matrix.FloatZeros(n, n)) } lmbda0 := matrix.FloatZeros(mnl+dims.Sum("l", "q", "s"), 1) lmbdasq0 := matrix.FloatZeros(mnl+dims.Sum("l", "q", "s"), 1) var f MatrixVariable = nil var Df MatrixVarDf = nil var H MatrixVarH = nil var ws3, wz3, wz2l, wz2nl *matrix.FloatMatrix var ws, wz, wz2, ws2 *matrix.FloatMatrix var wx, wx2, wy, wy2 MatrixVariable var gap, gap0, theta1, theta2, theta3, ts, tz, phi, phi0, mu, sigma, eta float64 var resx, resy, reszl, resznl, pcost, dcost, dres, pres, relgap float64 var resx0, resznl0, dres0, pres0 float64 var dsdz, dsdz0, step, step0, dphi, dphi0, sigma0, eta0 float64 var newresx, newresznl, newgap, newphi float64 var W *sets.FloatMatrixSet var f3 KKTFuncVar checkpnt.AddFloatVar("gap", &gap) checkpnt.AddFloatVar("pcost", &pcost) checkpnt.AddFloatVar("dcost", &dcost) checkpnt.AddFloatVar("pres", &pres) checkpnt.AddFloatVar("dres", &dres) checkpnt.AddFloatVar("relgap", &relgap) checkpnt.AddFloatVar("step", &step) checkpnt.AddFloatVar("dsdz", &dsdz) checkpnt.AddFloatVar("resx", &resx) checkpnt.AddFloatVar("resy", &resy) checkpnt.AddFloatVar("reszl", &reszl) checkpnt.AddFloatVar("resznl", &resznl) // Declare fDf and fH here, they bind to Df and H as they are already declared. // ??really?? var fDf func(u, v MatrixVariable, alpha, beta float64, trans la.Option) error = nil var fH func(u, v MatrixVariable, alpha, beta float64) error = nil relaxed_iters := 0 for iters := 0; iters <= maxIter+1; iters++ { checkpnt.MajorNext() checkpnt.Check("loopstart", 10) checkpnt.MinorPush(10) if refinement != 0 || solopts.Debug { f, Df, H, err = F.F2(x, matrix.FloatVector(z.FloatArray()[:mnl])) fDf = func(u, v MatrixVariable, alpha, beta float64, trans la.Option) error { return Df.Df(u, v, alpha, beta, trans) } fH = func(u, v MatrixVariable, alpha, beta float64) error { return H.Hf(u, v, alpha, beta) } } else { f, Df, err = F.F1(x) fDf = func(u, v MatrixVariable, alpha, beta float64, trans la.Option) error { return Df.Df(u, v, alpha, beta, trans) } } checkpnt.MinorPop() gap = sdot(s, z, dims, mnl) // these are helpers, copies of parts of z,s z_mnl := matrix.FloatVector(z.FloatArray()[:mnl]) z_mnl2 := matrix.FloatVector(z.FloatArray()[mnl:]) s_mnl := matrix.FloatVector(s.FloatArray()[:mnl]) s_mnl2 := matrix.FloatVector(s.FloatArray()[mnl:]) // rx = c + A'*y + Df'*z[:mnl] + G'*z[mnl:] // -- y, rx MatrixArg mCopy(c, rx) fA(y, rx, 1.0, 1.0, la.OptTrans) fDf(&matrixVar{z_mnl}, rx, 1.0, 1.0, la.OptTrans) fG(&matrixVar{z_mnl2}, rx, 1.0, 1.0, la.OptTrans) resx = math.Sqrt(rx.Dot(rx)) // rznl = s[:mnl] + f blas.Copy(s_mnl, rznl) blas.AxpyFloat(f.Matrix(), rznl, 1.0) resznl = blas.Nrm2Float(rznl) // rzl = s[mnl:] + G*x - h blas.Copy(s_mnl2, rzl) blas.AxpyFloat(h, rzl, -1.0) fG(x, &matrixVar{rzl}, 1.0, 1.0, la.OptNoTrans) reszl = snrm2(rzl, dims, 0) // Statistics for stopping criteria // pcost = c'*x // dcost = c'*x + y'*(A*x-b) + znl'*f(x) + zl'*(G*x-h) // = c'*x + y'*(A*x-b) + znl'*(f(x)+snl) + zl'*(G*x-h+sl) // - z'*s // = c'*x + y'*ry + znl'*rznl + zl'*rzl - gap //pcost = blas.DotFloat(c, x) pcost = c.Dot(x) dcost = pcost + blas.DotFloat(y.Matrix(), ry.Matrix()) + blas.DotFloat(z_mnl, rznl) dcost += sdot(z_mnl2, rzl, dims, 0) - gap if pcost < 0.0 { relgap = gap / -pcost } else if dcost > 0.0 { relgap = gap / dcost } else { relgap = math.NaN() } pres = math.Sqrt(resy*resy + resznl*resznl + reszl*reszl) dres = resx if iters == 0 { resx0 = math.Max(1.0, resx) resznl0 = math.Max(1.0, resznl) pres0 = math.Max(1.0, pres) dres0 = math.Max(1.0, dres) gap0 = gap theta1 = 1.0 / gap0 theta2 = 1.0 / resx0 theta3 = 1.0 / resznl0 } phi = theta1*gap + theta2*resx + theta3*resznl pres = pres / pres0 dres = dres / dres0 if solopts.ShowProgress { if iters == 0 { // some headers fmt.Printf("% 10s% 12s% 10s% 8s% 7s\n", "pcost", "dcost", "gap", "pres", "dres") } fmt.Printf("%2d: % 8.4e % 8.4e % 4.0e% 7.0e% 7.0e\n", iters, pcost, dcost, gap, pres, dres) } checkpnt.Check("checkgap", 50) // Stopping criteria if (pres <= feasTolerance && dres <= feasTolerance && (gap <= absTolerance || (!math.IsNaN(relgap) && relgap <= relTolerance))) || iters == maxIter { if iters == maxIter { s := "Terminated (maximum number of iterations reached)" if solopts.ShowProgress { fmt.Printf(s + "\n") } err = errors.New(s) sol.Status = Unknown } else { err = nil sol.Status = Optimal } sol.Result = sets.NewFloatSet("x", "y", "znl", "zl", "snl", "sl") sol.Result.Set("x", x.Matrix()) sol.Result.Set("y", y.Matrix()) sol.Result.Set("znl", matrix.FloatVector(z.FloatArray()[:mnl])) sol.Result.Set("zl", matrix.FloatVector(z.FloatArray()[mnl:])) sol.Result.Set("sl", matrix.FloatVector(s.FloatArray()[mnl:])) sol.Result.Set("snl", matrix.FloatVector(s.FloatArray()[:mnl])) sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz return } // Compute initial scaling W: // // W * z = W^{-T} * s = lambda. // // lmbdasq = lambda o lambda if iters == 0 { W, _ = computeScaling(s, z, lmbda, dims, mnl) checkpnt.AddScaleVar(W) } ssqr(lmbdasq, lmbda, dims, mnl) checkpnt.Check("lmbdasq", 90) // f3(x, y, z) solves // // [ H A' GG'*W^{-1} ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ by ]. // [ GG 0 -W' ] [ uz ] [ bz ] // // On entry, x, y, z contain bx, by, bz. // On exit, they contain ux, uy, uz. checkpnt.MinorPush(95) f3, err = kktsolver(W, x, z_mnl) checkpnt.MinorPop() checkpnt.Check("f3", 100) if err != nil { // ?? z_mnl is really copy of z[:mnl] ... should we copy here back to z?? singular_kkt_matrix := false if iters == 0 { err = errors.New("Rank(A) < p or Rank([H(x); A; Df(x); G] < n") return } else if relaxed_iters > 0 && relaxed_iters < MAX_RELAXED_ITERS { // The arithmetic error may be caused by a relaxed line // search in the previous iteration. Therefore we restore // the last saved state and require a standard line search. phi, gap = phi0, gap0 mu = gap / float64(mnl+dims.Sum("l", "s")+len(dims.At("q"))) blas.Copy(W0.At("dnl")[0], W.At("dnl")[0]) blas.Copy(W0.At("dnli")[0], W.At("dnli")[0]) blas.Copy(W0.At("d")[0], W.At("d")[0]) blas.Copy(W0.At("di")[0], W.At("di")[0]) blas.Copy(W0.At("beta")[0], W.At("beta")[0]) for k, _ := range dims.At("q") { blas.Copy(W0.At("v")[k], W.At("v")[k]) } for k, _ := range dims.At("s") { blas.Copy(W0.At("r")[k], W.At("r")[k]) blas.Copy(W0.At("rti")[k], W.At("rti")[k]) } //blas.Copy(x0, x) //x0.CopyTo(x) mCopy(x0, x) //blas.Copy(y0, y) mCopy(y0, y) blas.Copy(s0, s) blas.Copy(z0, z) blas.Copy(lmbda0, lmbda) blas.Copy(lmbdasq0, lmbdasq) // ??? //blas.Copy(rx0, rx) //rx0.CopyTo(rx) mCopy(rx0, rx) //blas.Copy(ry0, ry) mCopy(ry0, ry) //resx = math.Sqrt(blas.DotFloat(rx, rx)) resx = math.Sqrt(rx.Dot(rx)) blas.Copy(rznl0, rznl) blas.Copy(rzl0, rzl) resznl = blas.Nrm2Float(rznl) relaxed_iters = -1 // How about z_mnl here??? checkpnt.MinorPush(120) f3, err = kktsolver(W, x, z_mnl) checkpnt.MinorPop() if err != nil { singular_kkt_matrix = true } } else { singular_kkt_matrix = true } if singular_kkt_matrix { msg := "Terminated (singular KKT matrix)." if solopts.ShowProgress { fmt.Printf(msg + "\n") } zl := matrix.FloatVector(z.FloatArray()[mnl:]) sl := matrix.FloatVector(s.FloatArray()[mnl:]) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(sl, m, ind) symm(zl, m, ind) ind += m * m } ts, _ = maxStep(s, dims, mnl, nil) tz, _ = maxStep(z, dims, mnl, nil) err = errors.New(msg) sol.Status = Unknown sol.Result = sets.NewFloatSet("x", "y", "znl", "zl", "snl", "sl") sol.Result.Set("x", x.Matrix()) sol.Result.Set("y", y.Matrix()) sol.Result.Set("znl", matrix.FloatVector(z.FloatArray()[:mnl])) sol.Result.Set("zl", zl) sol.Result.Set("sl", sl) sol.Result.Set("snl", matrix.FloatVector(s.FloatArray()[:mnl])) sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz return } } // f4_no_ir(x, y, z, s) solves // // [ 0 ] [ H A' GG' ] [ ux ] [ bx ] // [ 0 ] + [ A 0 0 ] [ uy ] = [ by ] // [ W'*us ] [ GG 0 0 ] [ W^{-1}*uz ] [ bz ] // // lmbda o (uz + us) = bs. // // On entry, x, y, z, x, contain bx, by, bz, bs. // On exit, they contain ux, uy, uz, us. if iters == 0 { ws3 = matrix.FloatZeros(mnl+cdim, 1) wz3 = matrix.FloatZeros(mnl+cdim, 1) checkpnt.AddMatrixVar("ws3", ws3) checkpnt.AddMatrixVar("wz3", wz3) } f4_no_ir := func(x, y MatrixVariable, z, s *matrix.FloatMatrix) (err error) { // Solve // // [ H A' GG' ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ by ] // [ GG 0 -W'*W ] [ W^{-1}*uz ] [ bz - W'*(lmbda o\ bs) ] // // us = lmbda o\ bs - uz. err = nil // s := lmbda o\ s // = lmbda o\ bs sinv(s, lmbda, dims, mnl) // z := z - W'*s // = bz - W' * (lambda o\ bs) blas.Copy(s, ws3) scale(ws3, W, true, false) blas.AxpyFloat(ws3, z, -1.0) // Solve for ux, uy, uz err = f3(x, y, z) // s := s - z // = lambda o\ bs - z. blas.AxpyFloat(z, s, -1.0) return } if iters == 0 { wz2nl = matrix.FloatZeros(mnl, 1) wz2l = matrix.FloatZeros(cdim, 1) checkpnt.AddMatrixVar("wz2nl", wz2nl) checkpnt.AddMatrixVar("wz2l", wz2l) } res := func(ux, uy MatrixVariable, uz, us *matrix.FloatMatrix, vx, vy MatrixVariable, vz, vs *matrix.FloatMatrix) (err error) { // Evaluates residuals in Newton equations: // // [ vx ] [ 0 ] [ H A' GG' ] [ ux ] // [ vy ] -= [ 0 ] + [ A 0 0 ] [ uy ] // [ vz ] [ W'*us ] [ GG 0 0 ] [ W^{-1}*uz ] // // vs -= lmbda o (uz + us). err = nil minor := checkpnt.MinorTop() // vx := vx - H*ux - A'*uy - GG'*W^{-1}*uz fH(ux, vx, -1.0, 1.0) fA(uy, vx, -1.0, 1.0, la.OptTrans) blas.Copy(uz, wz3) scale(wz3, W, false, true) wz3_nl := matrix.FloatVector(wz3.FloatArray()[:mnl]) wz3_l := matrix.FloatVector(wz3.FloatArray()[mnl:]) fDf(&matrixVar{wz3_nl}, vx, -1.0, 1.0, la.OptTrans) fG(&matrixVar{wz3_l}, vx, -1.0, 1.0, la.OptTrans) checkpnt.Check("10res", minor+10) // vy := vy - A*ux fA(ux, vy, -1.0, 1.0, la.OptNoTrans) // vz := vz - W'*us - GG*ux err = fDf(ux, &matrixVar{wz2nl}, 1.0, 0.0, la.OptNoTrans) checkpnt.Check("15res", minor+10) blas.AxpyFloat(wz2nl, vz, -1.0) fG(ux, &matrixVar{wz2l}, 1.0, 0.0, la.OptNoTrans) checkpnt.Check("20res", minor+10) blas.AxpyFloat(wz2l, vz, -1.0, &la.IOpt{"offsety", mnl}) blas.Copy(us, ws3) scale(ws3, W, true, false) blas.AxpyFloat(ws3, vz, -1.0) checkpnt.Check("30res", minor+10) // vs -= lmbda o (uz + us) blas.Copy(us, ws3) blas.AxpyFloat(uz, ws3, 1.0) sprod(ws3, lmbda, dims, mnl, &la.SOpt{"diag", "D"}) blas.AxpyFloat(ws3, vs, -1.0) checkpnt.Check("90res", minor+10) return } // f4(x, y, z, s) solves the same system as f4_no_ir, but applies // iterative refinement. if iters == 0 { if refinement > 0 || solopts.Debug { wx = c.Copy() wy = b.Copy() wz = z.Copy() ws = s.Copy() checkpnt.AddVerifiable("wx", wx) checkpnt.AddMatrixVar("ws", ws) checkpnt.AddMatrixVar("wz", wz) } if refinement > 0 { wx2 = c.Copy() wy2 = b.Copy() wz2 = matrix.FloatZeros(mnl+cdim, 1) ws2 = matrix.FloatZeros(mnl+cdim, 1) checkpnt.AddVerifiable("wx2", wx2) checkpnt.AddMatrixVar("ws2", ws2) checkpnt.AddMatrixVar("wz2", wz2) } } f4 := func(x, y MatrixVariable, z, s *matrix.FloatMatrix) (err error) { if refinement > 0 || solopts.Debug { mCopy(x, wx) mCopy(y, wy) blas.Copy(z, wz) blas.Copy(s, ws) } minor := checkpnt.MinorTop() checkpnt.Check("0_f4", minor+100) checkpnt.MinorPush(minor + 100) err = f4_no_ir(x, y, z, s) checkpnt.MinorPop() checkpnt.Check("1_f4", minor+200) for i := 0; i < refinement; i++ { mCopy(wx, wx2) mCopy(wy, wy2) blas.Copy(wz, wz2) blas.Copy(ws, ws2) checkpnt.Check("2_f4", minor+(1+i)*200) checkpnt.MinorPush(minor + (1+i)*200) res(x, y, z, s, wx2, wy2, wz2, ws2) checkpnt.MinorPop() checkpnt.Check("3_f4", minor+(1+i)*200+100) err = f4_no_ir(wx2, wy2, wz2, ws2) checkpnt.MinorPop() checkpnt.Check("4_f4", minor+(1+i)*200+199) wx2.Axpy(x, 1.0) wy2.Axpy(y, 1.0) blas.AxpyFloat(wz2, z, 1.0) blas.AxpyFloat(ws2, s, 1.0) } if solopts.Debug { res(x, y, z, s, wx, wy, wz, ws) fmt.Printf("KKT residuals:\n") } return } sigma, eta = 0.0, 0.0 for i := 0; i < 2; i++ { minor := (i + 2) * 1000 checkpnt.MinorPush(minor) checkpnt.Check("loop01", minor) // Solve // // [ 0 ] [ H A' GG' ] [ dx ] // [ 0 ] + [ A 0 0 ] [ dy ] = -(1 - eta)*r // [ W'*ds ] [ GG 0 0 ] [ W^{-1}*dz ] // // lmbda o (dz + ds) = -lmbda o lmbda + sigma*mu*e. // mu = gap / float64(mnl+dims.Sum("l", "s")+len(dims.At("q"))) blas.ScalFloat(ds, 0.0) blas.AxpyFloat(lmbdasq, ds, -1.0, &la.IOpt{"n", mnl + dims.Sum("l", "q")}) ind = mnl + dims.At("l")[0] iset := matrix.MakeIndexSet(0, ind, 1) ds.Add(sigma*mu, iset...) for _, m := range dims.At("q") { ds.Add(sigma*mu, ind) ind += m } ind2 := ind for _, m := range dims.At("s") { blas.AxpyFloat(lmbdasq, ds, -1.0, &la.IOpt{"n", m}, &la.IOpt{"offsetx", ind2}, &la.IOpt{"offsety", ind}, &la.IOpt{"incy", m + 1}) ds.Add(sigma*mu, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m ind2 += m } dx.Scal(0.0) rx.Axpy(dx, -1.0+eta) dy.Scal(0.0) ry.Axpy(dy, -1.0+eta) dz.Scale(0.0) blas.AxpyFloat(rznl, dz, -1.0+eta) blas.AxpyFloat(rzl, dz, -1.0+eta, &la.IOpt{"offsety", mnl}) //fmt.Printf("dx=\n%v\n", dx) //fmt.Printf("dz=\n%v\n", dz.ToString("%.7f")) //fmt.Printf("ds=\n%v\n", ds.ToString("%.7f")) checkpnt.Check("pref4", minor) checkpnt.MinorPush(minor) err = f4(dx, dy, dz, ds) if err != nil { if iters == 0 { s := fmt.Sprintf("Rank(A) < p or Rank([H(x); A; Df(x); G] < n (%s)", err) err = errors.New(s) return } msg := "Terminated (singular KKT matrix)." if solopts.ShowProgress { fmt.Printf(msg + "\n") } zl := matrix.FloatVector(z.FloatArray()[mnl:]) sl := matrix.FloatVector(s.FloatArray()[mnl:]) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(sl, m, ind) symm(zl, m, ind) ind += m * m } ts, _ = maxStep(s, dims, mnl, nil) tz, _ = maxStep(z, dims, mnl, nil) err = errors.New(msg) sol.Status = Unknown sol.Result = sets.NewFloatSet("x", "y", "znl", "zl", "snl", "sl") sol.Result.Set("x", x.Matrix()) sol.Result.Set("y", y.Matrix()) sol.Result.Set("znl", matrix.FloatVector(z.FloatArray()[:mnl])) sol.Result.Set("zl", zl) sol.Result.Set("sl", sl) sol.Result.Set("snl", matrix.FloatVector(s.FloatArray()[:mnl])) sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz return } checkpnt.MinorPop() checkpnt.Check("postf4", minor+400) // Inner product ds'*dz and unscaled steps are needed in the // line search. dsdz = sdot(ds, dz, dims, mnl) blas.Copy(dz, dz2) scale(dz2, W, false, true) blas.Copy(ds, ds2) scale(ds2, W, true, false) checkpnt.Check("dsdz", minor+400) // Maximum steps to boundary. // // Also compute the eigenvalue decomposition of 's' blocks in // ds, dz. The eigenvectors Qs, Qz are stored in ds, dz. // The eigenvalues are stored in sigs, sigz. scale2(lmbda, ds, dims, mnl, false) ts, _ = maxStep(ds, dims, mnl, sigs) scale2(lmbda, dz, dims, mnl, false) tz, _ = maxStep(dz, dims, mnl, sigz) t := maxvec([]float64{0.0, ts, tz}) if t == 0 { step = 1.0 } else { step = math.Min(1.0, STEP/t) } checkpnt.Check("maxstep", minor+400) var newDf MatrixVarDf = nil var newf MatrixVariable = nil // Backtrack until newx is in domain of f. backtrack := true for backtrack { mCopy(x, newx) dx.Axpy(newx, step) newf, newDf, err = F.F1(newx) if newf != nil { backtrack = false } else { step *= BETA } } // Merit function // // phi = theta1 * gap + theta2 * norm(rx) + // theta3 * norm(rznl) // // and its directional derivative dphi. phi = theta1*gap + theta2*resx + theta3*resznl if i == 0 { dphi = -phi } else { dphi = -theta1*(1-sigma)*gap - theta2*(1-eta)*resx - theta3*(1-eta)*resznl } var newfDf func(x, y MatrixVariable, a, b float64, trans la.Option) error // Line search backtrack = true for backtrack { mCopy(x, newx) dx.Axpy(newx, step) mCopy(y, newy) dy.Axpy(newy, step) blas.Copy(z, newz) blas.AxpyFloat(dz2, newz, step) blas.Copy(s, news) blas.AxpyFloat(ds2, news, step) newf, newDf, err = F.F1(newx) newfDf = func(u, v MatrixVariable, a, b float64, trans la.Option) error { return newDf.Df(u, v, a, b, trans) } // newrx = c + A'*newy + newDf'*newz[:mnl] + G'*newz[mnl:] newz_mnl := matrix.FloatVector(newz.FloatArray()[:mnl]) newz_ml := matrix.FloatVector(newz.FloatArray()[mnl:]) //blas.Copy(c, newrx) //c.CopyTo(newrx) mCopy(c, newrx) fA(newy, newrx, 1.0, 1.0, la.OptTrans) newfDf(&matrixVar{newz_mnl}, newrx, 1.0, 1.0, la.OptTrans) fG(&matrixVar{newz_ml}, newrx, 1.0, 1.0, la.OptTrans) newresx = math.Sqrt(newrx.Dot(newrx)) // newrznl = news[:mnl] + newf news_mnl := matrix.FloatVector(news.FloatArray()[:mnl]) //news_ml := matrix.FloatVector(news.FloatArray()[mnl:]) blas.Copy(news_mnl, newrznl) blas.AxpyFloat(newf.Matrix(), newrznl, 1.0) newresznl = blas.Nrm2Float(newrznl) newgap = (1.0-(1.0-sigma)*step)*gap + step*step*dsdz newphi = theta1*newgap + theta2*newresx + theta3*newresznl if i == 0 { if newgap <= (1.0-ALPHA*step)*gap && (relaxed_iters > 0 && relaxed_iters < MAX_RELAXED_ITERS || newphi <= phi+ALPHA*step*dphi) { backtrack = false sigma = math.Min(newgap/gap, math.Pow((newgap/gap), EXPON)) //fmt.Printf("break 1: sigma=%.7f\n", sigma) eta = 0.0 } else { step *= BETA } } else { if relaxed_iters == -1 || (relaxed_iters == 0 && MAX_RELAXED_ITERS == 0) { // Do a standard line search. if newphi <= phi+ALPHA*step*dphi { relaxed_iters = 0 backtrack = false //fmt.Printf("break 2 : newphi=%.7f\n", newphi) } else { step *= BETA } } else if relaxed_iters == 0 && relaxed_iters < MAX_RELAXED_ITERS { if newphi <= phi+ALPHA*step*dphi { // Relaxed l.s. gives sufficient decrease. relaxed_iters = 0 } else { // Save state. phi0, dphi0, gap0 = phi, dphi, gap step0 = step blas.Copy(W.At("dnl")[0], W0.At("dnl")[0]) blas.Copy(W.At("dnli")[0], W0.At("dnli")[0]) blas.Copy(W.At("d")[0], W0.At("d")[0]) blas.Copy(W.At("di")[0], W0.At("di")[0]) blas.Copy(W.At("beta")[0], W0.At("beta")[0]) for k, _ := range dims.At("q") { blas.Copy(W.At("v")[k], W0.At("v")[k]) } for k, _ := range dims.At("s") { blas.Copy(W.At("r")[k], W0.At("r")[k]) blas.Copy(W.At("rti")[k], W0.At("rti")[k]) } mCopy(x, x0) mCopy(y, y0) mCopy(dx, dx0) mCopy(dy, dy0) blas.Copy(s, s0) blas.Copy(z, z0) blas.Copy(ds, ds0) blas.Copy(dz, dz0) blas.Copy(ds2, ds20) blas.Copy(dz2, dz20) blas.Copy(lmbda, lmbda0) blas.Copy(lmbdasq, lmbdasq0) // ??? mCopy(rx, rx0) mCopy(ry, ry0) blas.Copy(rznl, rznl0) blas.Copy(rzl, rzl0) dsdz0 = dsdz sigma0, eta0 = sigma, eta relaxed_iters = 1 } backtrack = false //fmt.Printf("break 3 : newphi=%.7f\n", newphi) } else if relaxed_iters >= 0 && relaxed_iters < MAX_RELAXED_ITERS && MAX_RELAXED_ITERS > 0 { if newphi <= phi0+ALPHA*step0*dphi0 { // Relaxed l.s. gives sufficient decrease. relaxed_iters = 0 } else { // Relaxed line search relaxed_iters += 1 } backtrack = false //fmt.Printf("break 4 : newphi=%.7f\n", newphi) } else if relaxed_iters == MAX_RELAXED_ITERS && MAX_RELAXED_ITERS > 0 { if newphi <= phi0+ALPHA*step0*dphi0 { // Series of relaxed line searches ends // with sufficient decrease w.r.t. phi0. backtrack = false relaxed_iters = 0 //fmt.Printf("break 5 : newphi=%.7f\n", newphi) } else if newphi >= phi0 { // Resume last saved line search phi, dphi, gap = phi0, dphi0, gap0 step = step0 blas.Copy(W0.At("dnl")[0], W.At("dnl")[0]) blas.Copy(W0.At("dnli")[0], W.At("dnli")[0]) blas.Copy(W0.At("d")[0], W.At("d")[0]) blas.Copy(W0.At("di")[0], W.At("di")[0]) blas.Copy(W0.At("beta")[0], W.At("beta")[0]) for k, _ := range dims.At("q") { blas.Copy(W0.At("v")[k], W.At("v")[k]) } for k, _ := range dims.At("s") { blas.Copy(W0.At("r")[k], W.At("r")[k]) blas.Copy(W0.At("rti")[k], W.At("rti")[k]) } mCopy(x, x0) mCopy(y, y0) mCopy(dx, dx0) mCopy(dy, dy0) blas.Copy(s, s0) blas.Copy(z, z0) blas.Copy(ds2, ds20) blas.Copy(dz2, dz20) blas.Copy(lmbda, lmbda0) blas.Copy(lmbdasq, lmbdasq0) // ??? mCopy(rx, rx0) mCopy(ry, ry0) blas.Copy(rznl, rznl0) blas.Copy(rzl, rzl0) dsdz = dsdz0 sigma, eta = sigma0, eta0 relaxed_iters = -1 } else if newphi <= phi+ALPHA*step*dphi { // Series of relaxed line searches ends // with sufficient decrease w.r.t. phi0. backtrack = false relaxed_iters = -1 //fmt.Printf("break 6 : newphi=%.7f\n", newphi) } } } } // end of line search checkpnt.Check("eol", minor+900) } // end for [0,1] // Update x, y dx.Axpy(x, step) dy.Axpy(y, step) checkpnt.Check("updatexy", 5000) // Replace nonlinear, 'l' and 'q' blocks of ds and dz with the // updated variables in the current scaling. // Replace 's' blocks of ds and dz with the factors Ls, Lz in a // factorization Ls*Ls', Lz*Lz' of the updated variables in the // current scaling. // ds := e + step*ds for nonlinear, 'l' and 'q' blocks. // dz := e + step*dz for nonlinear, 'l' and 'q' blocks. blas.ScalFloat(ds, step, &la.IOpt{"n", mnl + dims.Sum("l", "q")}) blas.ScalFloat(dz, step, &la.IOpt{"n", mnl + dims.Sum("l", "q")}) ind := mnl + dims.At("l")[0] is := matrix.MakeIndexSet(0, ind, 1) ds.Add(1.0, is...) dz.Add(1.0, is...) for _, m := range dims.At("q") { ds.SetIndex(ind, 1.0+ds.GetIndex(ind)) dz.SetIndex(ind, 1.0+dz.GetIndex(ind)) ind += m } checkpnt.Check("updatedsdz", 5100) // ds := H(lambda)^{-1/2} * ds and dz := H(lambda)^{-1/2} * dz. // // This replaces the 'l' and 'q' components of ds and dz with the // updated variables in the current scaling. // The 's' components of ds and dz are replaced with // // diag(lmbda_k)^{1/2} * Qs * diag(lmbda_k)^{1/2} // diag(lmbda_k)^{1/2} * Qz * diag(lmbda_k)^{1/2} scale2(lmbda, ds, dims, mnl, true) scale2(lmbda, dz, dims, mnl, true) checkpnt.Check("scale2", 5200) // sigs := ( e + step*sigs ) ./ lambda for 's' blocks. // sigz := ( e + step*sigz ) ./ lambda for 's' blocks. blas.ScalFloat(sigs, step) blas.ScalFloat(sigz, step) sigs.Add(1.0) sigz.Add(1.0) sdimsum := dims.Sum("s") qdimsum := dims.Sum("l", "q") blas.TbsvFloat(lmbda, sigs, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0}, &la.IOpt{"lda", 1}, &la.IOpt{"offseta", mnl + qdimsum}) blas.TbsvFloat(lmbda, sigz, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0}, &la.IOpt{"lda", 1}, &la.IOpt{"offseta", mnl + qdimsum}) checkpnt.Check("sigs", 5300) ind2 := mnl + qdimsum ind3 := 0 sdims := dims.At("s") for k := 0; k < len(sdims); k++ { m := sdims[k] for i := 0; i < m; i++ { a := math.Sqrt(sigs.GetIndex(ind3 + i)) blas.ScalFloat(ds, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m}) a = math.Sqrt(sigz.GetIndex(ind3 + i)) blas.ScalFloat(dz, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m}) } ind2 += m * m ind3 += m } checkpnt.Check("scaling", 5400) err = updateScaling(W, lmbda, ds, dz) checkpnt.Check("postscaling", 5500) // Unscale s, z, tau, kappa (unscaled variables are used only to // compute feasibility residuals). ind = mnl + dims.Sum("l", "q") ind2 = ind blas.Copy(lmbda, s, &la.IOpt{"n", ind}) for _, m := range dims.At("s") { blas.ScalFloat(s, 0.0, &la.IOpt{"offset", ind2}) blas.Copy(lmbda, s, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2}, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}) ind += m ind2 += m * m } scale(s, W, true, false) checkpnt.Check("unscale_s", 5600) ind = mnl + dims.Sum("l", "q") ind2 = ind blas.Copy(lmbda, z, &la.IOpt{"n", ind}) for _, m := range dims.At("s") { blas.ScalFloat(z, 0.0, &la.IOpt{"offset", ind2}) blas.Copy(lmbda, z, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2}, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}) ind += m ind2 += m * m } scale(z, W, false, true) checkpnt.Check("unscale_z", 5700) gap = blas.DotFloat(lmbda, lmbda) } return }
// Solves a convex optimization problem with a linear objective // // minimize c'*x // subject to f(x) <= 0 // G*x <= h // A*x = b. // // using custom KTT equation solver. // func CplCustomKKT(F ConvexProg, c *matrix.FloatMatrix, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if c == nil { err = errors.New("'c' must be non nil matrix") return } if !c.SizeMatch(x0.Size()) { err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } var mc = matrixVar{c} var mb = matrixVar{b} var mA = matrixVarA{A} var mG = matrixVarG{G, dims} return cpl_problem(F, &mc, &mG, h, &mA, &mb, dims, kktsolver, solopts, x0, mnl) }
// Solves a convex optimization problem with a linear objective // // minimize f0(x) // subject to fk(x) <= 0, k = 1, ..., mnl // G*x <= h // A*x = b. // // f is vector valued, convex and twice differentiable. The linear // inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. The // next N cones are second order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{h.Rows()}, q: []int{}, s: []int{}. // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] primal solution // Result.At("snl")[0] non-linear constraint slacks // Result.At("sl")[0] linear constraint slacks // Result.At("y")[0] values for linear equality constraints y // Result.At("znl")[0] values of dual variables for nonlinear inequalities // Result.At("zl")[0] values of dual variables for linear inequalities // // If err is non-nil then sol is nil and err contains information about the argument or // computation error. // func Cp(F ConvexProg, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, x0.Rows()) } if !G.SizeMatch(cdim, x0.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, x0.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, x0.Rows()) } if A.Cols() != x0.Rows() { estr := fmt.Sprintf("'A' must have %d columns", x0.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "chol" } else { solvername = "chol2" } } c_e := newEpigraph(x0, 1.0) blas.ScalFloat(c_e.m(), 0.0) //F_e := &cpProg{F} G_e := epMatrixG{G, dims} A_e := epMatrixA{A} b_e := matrixVar{b} var factor kktFactor var kktsolver KKTCpSolver = nil if kktfunc, ok := solvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, mnl) if err != nil { return nil, err } // solver is kktsolver = func(W *sets.FloatMatrixSet, x, z *matrix.FloatMatrix) (KKTFunc, error) { _, Df, H, err := F.F2(x, z) if err != nil { return nil, err } return factor(W, H, Df.GetSubMatrix(1, 0)) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } return cp_problem(F, c_e, &G_e, h, &A_e, &b_e, dims, kktsolver, solopts, x0, mnl) }
// Solves a convex optimization problem with a linear objective // // minimize f0(x) // subject to fk(x) <= 0, k = 1, ..., mnl // G*x <= h // A*x = b. // // using custom solver for KKT equations and constraint equations G and A. // func CpCustomMatrix(F ConvexProg, G MatrixG, h *matrix.FloatMatrix, A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } var G_e MatrixVarG = nil if G == nil { G_e = &epMatrixG{matrix.FloatZeros(0, x0.Rows()), dims} } else { G_e = &epiMatrixG{G, dims} } var A_e MatrixVarA = nil if A == nil { A_e = &epMatrixA{matrix.FloatZeros(0, x0.Rows())} } else { A_e = &epiMatrixA{A} } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if kktsolver == nil { err = errors.New("'kktsolver' must be non-nil function.") return } c_e := newEpigraph(x0, 1.0) blas.ScalFloat(c_e.m(), 0.0) b_e := matrixVar{b} return cp_problem(F, c_e, G_e, h, A_e, &b_e, dims, kktsolver, solopts, x0, mnl) }
// Solves a pair of primal and dual cone programs using custom KKT solver and constraint // interfaces MatrixG and MatrixA // func ConeLpCustomMatrix(c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix, A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { err = nil if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if h == nil || h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") //cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } // Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G. indq := make([]int, 0) indq = append(indq, dims.At("l")[0]) for _, k := range dims.At("q") { indq = append(indq, indq[len(indq)-1]+k) } // Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G. inds := make([]int, 0) inds = append(inds, indq[len(indq)-1]) for _, k := range dims.At("s") { inds = append(inds, inds[len(inds)-1]+k*k) } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } if kktsolver == nil { err = errors.New("nil kktsolver not allowed.") return } var mA MatrixVarA var mG MatrixVarG if G == nil { mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims} } else { mG = &matrixIfG{G} } if A == nil { mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())} } else { mA = &matrixIfA{A} } var mc = &matrixVar{c} var mb = &matrixVar{b} return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart) }
// Solves a pair of primal and dual cone programs using custom KKT solver. // func ConeLpCustomKKT(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") //cdim_diag := dims.Sum("l", "q", "s") if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } mA := &matrixVarA{A} mG := &matrixVarG{G, dims} mc := &matrixVar{c} mb := &matrixVar{b} return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart) }
// Solves a pair of primal and dual cone programs // // minimize c'*x // subject to G*x + s = h // A*x = b // s >= 0 // // maximize -h'*z - b'*y // subject to G'*z + A'*y + c = 0 // z >= 0. // // The inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. // The next N cones are second order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{G.Rows()}, q: []int{}, s: []int{}. // // Arguments primalstart, dualstart are optional starting points for primal and // dual problems. If non-nil then primalstart is a FloatMatrixSet having two entries. // // primalstart.At("x")[0] starting point for x // primalstart.At("s")[0] starting point for s // dualstart.At("y")[0] starting point for y // dualstart.At("z")[0] starting point for z // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] solution for x // Result.At("y")[0] solution for y // Result.At("s")[0] solution for s // Result.At("z")[0] solution for z // func ConeLp(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { if c == nil || c.Cols() > 1 { err = errors.New("'c' must be matrix with 1 column") return } if c.Rows() < 1 { err = errors.New("No variables, 'c' must have at least one row") return } if h == nil || h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "qr" } else { solvername = "chol2" } } var factor kktFactor var kktsolver KKTConeSolver = nil if kktfunc, ok := lpsolvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, 0) if err != nil { return nil, err } kktsolver = func(W *sets.FloatMatrixSet) (KKTFunc, error) { return factor(W, nil, nil) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } //return ConeLpCustom(c, &mG, h, &mA, b, dims, kktsolver, solopts, primalstart, dualstart) c_e := &matrixVar{c} G_e := &matrixVarG{G, dims} A_e := &matrixVarA{A} b_e := &matrixVar{b} return conelp_problem(c_e, G_e, h, A_e, b_e, dims, kktsolver, solopts, primalstart, dualstart) }
func conelp_solver(c MatrixVariable, G MatrixVarG, h *matrix.FloatMatrix, A MatrixVarA, b MatrixVariable, dims *sets.DimensionSet, kktsolver KKTConeSolverVar, solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) { err = nil const EXPON = 3 const STEP = 0.99 sol = &Solution{Unknown, nil, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0} var refinement int if solopts.Refinement > 0 { refinement = solopts.Refinement } else { refinement = 0 if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { refinement = 1 } } feasTolerance := FEASTOL absTolerance := ABSTOL relTolerance := RELTOL maxIter := MAXITERS if solopts.FeasTol > 0.0 { feasTolerance = solopts.FeasTol } if solopts.AbsTol > 0.0 { absTolerance = solopts.AbsTol } if solopts.RelTol > 0.0 { relTolerance = solopts.RelTol } if solopts.MaxIter > 0 { maxIter = solopts.MaxIter } if err = checkConeLpDimensions(dims); err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") //cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } // Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G. indq := make([]int, 0) indq = append(indq, dims.At("l")[0]) for _, k := range dims.At("q") { indq = append(indq, indq[len(indq)-1]+k) } // Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G. inds := make([]int, 0) inds = append(inds, indq[len(indq)-1]) for _, k := range dims.At("s") { inds = append(inds, inds[len(inds)-1]+k*k) } Gf := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error { return G.Gf(x, y, alpha, beta, trans) } Af := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error { return A.Af(x, y, alpha, beta, trans) } // kktsolver(W) returns a routine for solving 3x3 block KKT system // // [ 0 A' G'*W^{-1} ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ by ]. // [ G 0 -W' ] [ uz ] [ bz ] if kktsolver == nil { err = errors.New("nil kktsolver not allowed.") return } // res() evaluates residual in 5x5 block KKT system // // [ vx ] [ 0 ] [ 0 A' G' c ] [ ux ] // [ vy ] [ 0 ] [-A 0 0 b ] [ uy ] // [ vz ] += [ W'*us ] - [-G 0 0 h ] [ W^{-1}*uz ] // [ vtau ] [ dg*ukappa ] [-c' -b' -h' 0 ] [ utau/dg ] // // vs += lmbda o (dz + ds) // vkappa += lmbdg * (dtau + dkappa). ws3 := matrix.FloatZeros(cdim, 1) wz3 := matrix.FloatZeros(cdim, 1) checkpnt.AddMatrixVar("ws3", ws3) checkpnt.AddMatrixVar("wz3", wz3) // res := func(ux, uy MatrixVariable, uz, utau, us, ukappa *matrix.FloatMatrix, vx, vy MatrixVariable, vz, vtau, vs, vkappa *matrix.FloatMatrix, W *sets.FloatMatrixSet, dg float64, lmbda *matrix.FloatMatrix) (err error) { err = nil // vx := vx - A'*uy - G'*W^{-1}*uz - c*utau/dg Af(uy, vx, -1.0, 1.0, la.OptTrans) //fmt.Printf("post-Af vx=\n%v\n", vx) blas.Copy(uz, wz3) scale(wz3, W, false, true) Gf(&matrixVar{wz3}, vx, -1.0, 1.0, la.OptTrans) //blas.AxpyFloat(c, vx, -utau.Float()/dg) c.Axpy(vx, -utau.Float()/dg) // vy := vy + A*ux - b*utau/dg Af(ux, vy, 1.0, 1.0, la.OptNoTrans) //blas.AxpyFloat(b, vy, -utau.Float()/dg) b.Axpy(vy, -utau.Float()/dg) // vz := vz + G*ux - h*utau/dg + W'*us Gf(ux, &matrixVar{vz}, 1.0, 1.0, la.OptNoTrans) blas.AxpyFloat(h, vz, -utau.Float()/dg) blas.Copy(us, ws3) scale(ws3, W, true, false) blas.AxpyFloat(ws3, vz, 1.0) // vtau := vtau + c'*ux + b'*uy + h'*W^{-1}*uz + dg*ukappa var vtauplus float64 = dg*ukappa.Float() + c.Dot(ux) + b.Dot(uy) + sdot(h, wz3, dims, 0) vtau.SetValue(vtau.Float() + vtauplus) // vs := vs + lmbda o (uz + us) blas.Copy(us, ws3) blas.AxpyFloat(uz, ws3, 1.0) sprod(ws3, lmbda, dims, 0, &la.SOpt{"diag", "D"}) blas.AxpyFloat(ws3, vs, 1.0) // vkappa += vkappa + lmbdag * (utau + ukappa) lscale := lmbda.GetIndex(-1) var vkplus float64 = lscale * (utau.Float() + ukappa.Float()) vkappa.SetValue(vkappa.Float() + vkplus) return } resx0 := math.Max(1.0, math.Sqrt(c.Dot(c))) resy0 := math.Max(1.0, math.Sqrt(b.Dot(b))) resz0 := math.Max(1.0, snrm2(h, dims, 0)) // select initial points //fmt.Printf("** initial resx0=%.4f, resy0=%.4f, resz0=%.4f \n", resx0, resy0, resz0) x := c.Copy() //blas.ScalFloat(x, 0.0) x.Scal(0.0) y := b.Copy() //blas.ScalFloat(y, 0.0) y.Scal(0.0) s := matrix.FloatZeros(cdim, 1) z := matrix.FloatZeros(cdim, 1) dx := c.Copy() dy := b.Copy() ds := matrix.FloatZeros(cdim, 1) dz := matrix.FloatZeros(cdim, 1) // these are singleton matrix dkappa := matrix.FloatValue(0.0) dtau := matrix.FloatValue(0.0) checkpnt.AddVerifiable("x", x) checkpnt.AddMatrixVar("s", s) checkpnt.AddMatrixVar("z", z) checkpnt.AddVerifiable("dx", dx) checkpnt.AddMatrixVar("ds", ds) checkpnt.AddMatrixVar("dz", dz) checkpnt.Check("00init", 1) var W *sets.FloatMatrixSet var f KKTFuncVar if primalstart == nil || dualstart == nil { // Factor // // [ 0 A' G' ] // [ A 0 0 ]. // [ G 0 -I ] // W = sets.NewFloatSet("d", "di", "v", "beta", "r", "rti") dd := dims.At("l")[0] mat := matrix.FloatOnes(dd, 1) W.Set("d", mat) mat = matrix.FloatOnes(dd, 1) W.Set("di", mat) dq := len(dims.At("q")) W.Set("beta", matrix.FloatOnes(dq, 1)) for _, n := range dims.At("q") { vm := matrix.FloatZeros(n, 1) vm.SetIndex(0, 1.0) W.Append("v", vm) } for _, n := range dims.At("s") { W.Append("r", matrix.FloatIdentity(n)) W.Append("rti", matrix.FloatIdentity(n)) } f, err = kktsolver(W) if err != nil { fmt.Printf("kktsolver error: %s\n", err) return } checkpnt.AddScaleVar(W) } checkpnt.Check("05init", 5) if primalstart == nil { // minimize || G * x - h ||^2 // subject to A * x = b // // by solving // // [ 0 A' G' ] [ x ] [ 0 ] // [ A 0 0 ] * [ dy ] = [ b ]. // [ G 0 -I ] [ -s ] [ h ] //blas.ScalFloat(x, 0.0) //blas.CopyFloat(b, dy) checkpnt.MinorPush(5) x.Scal(0.0) mCopy(b, dy) blas.CopyFloat(h, s) err = f(x, dy, s) if err != nil { fmt.Printf("f(x,dy,s): %s\n", err) return } blas.ScalFloat(s, -1.0) //fmt.Printf("initial s=\n%v\n", s.ToString("%.5f")) checkpnt.MinorPop() } else { mCopy(&matrixVar{primalstart.At("x")[0]}, x) blas.Copy(primalstart.At("s")[0], s) } // ts = min{ t | s + t*e >= 0 } ts, _ := maxStep(s, dims, 0, nil) if ts >= 0 && primalstart != nil { err = errors.New("initial s is not positive") return } //fmt.Printf("initial ts=%.5f\n", ts) checkpnt.Check("10init", 10) if dualstart == nil { // minimize || z ||^2 // subject to G'*z + A'*y + c = 0 // // by solving // // [ 0 A' G' ] [ dx ] [ -c ] // [ A 0 0 ] [ y ] = [ 0 ]. // [ G 0 -I ] [ z ] [ 0 ] //blas.Copy(c, dx) //blas.ScalFloat(dx, -1.0) //blas.ScalFloat(y, 0.0) checkpnt.MinorPush(10) mCopy(c, dx) dx.Scal(-1.0) y.Scal(0.0) blas.ScalFloat(z, 0.0) err = f(dx, y, z) if err != nil { fmt.Printf("f(dx,y,z): %s\n", err) return } //fmt.Printf("initial z=\n%v\n", z.ToString("%.5f")) checkpnt.MinorPop() } else { if len(dualstart.At("y")) > 0 { mCopy(&matrixVar{dualstart.At("y")[0]}, y) } blas.Copy(dualstart.At("z")[0], z) } // ts = min{ t | z + t*e >= 0 } tz, _ := maxStep(z, dims, 0, nil) if tz >= 0 && dualstart != nil { err = errors.New("initial z is not positive") return } //fmt.Printf("initial tz=%.5f\n", tz) nrms := snrm2(s, dims, 0) nrmz := snrm2(z, dims, 0) gap := 0.0 pcost := 0.0 dcost := 0.0 relgap := 0.0 checkpnt.Check("20init", 0) if primalstart == nil && dualstart == nil { gap = sdot(s, z, dims, 0) pcost = c.Dot(x) dcost = -b.Dot(y) - sdot(h, z, dims, 0) if pcost < 0.0 { relgap = gap / -pcost } else if dcost > 0.0 { relgap = gap / dcost } else { relgap = math.NaN() } if ts <= 0 && tz < 0 && (gap <= absTolerance || (!math.IsNaN(relgap) && relgap <= relTolerance)) { // Constructed initial points happen to be feasible and optimal ind := dims.At("l")[0] + dims.Sum("q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } // rx = A'*y + G'*z + c rx := c.Copy() Af(y, rx, 1.0, 1.0, la.OptTrans) Gf(&matrixVar{z}, rx, 1.0, 1.0, la.OptTrans) resx := math.Sqrt(rx.Dot(rx)) // ry = b - A*x ry := b.Copy() Af(x, ry, -1.0, -1.0, la.OptNoTrans) resy := math.Sqrt(ry.Dot(ry)) // rz = s + G*x - h rz := matrix.FloatZeros(cdim, 1) Gf(x, &matrixVar{rz}, 1.0, 0.0, la.OptNoTrans) blas.AxpyFloat(s, rz, 1.0) blas.AxpyFloat(h, rz, -1.0) resz := snrm2(rz, dims, 0) pres := math.Max(resy/resy0, resz/resz0) dres := resx / resx0 cx := c.Dot(x) by := b.Dot(y) hz := sdot(h, z, dims, 0) //sol.X = x; sol.Y = y; sol.S = s; sol.Z = z sol.Result = sets.NewFloatSet("x", "y", "s", "x") sol.Result.Append("x", x.Matrix()) sol.Result.Append("y", y.Matrix()) sol.Result.Append("s", s) sol.Result.Append("z", z) sol.Status = Optimal sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = cx sol.DualObjective = -(by + hz) sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz return } if ts >= -1e-8*math.Max(nrms, 1.0) { a := 1.0 + ts is := make([]int, 0) // indexes s[:dims['l']] if dims.At("l")[0] > 0 { is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) } // indexes s[indq[:-1]] if len(indq) > 1 { is = append(is, indq[:len(indq)-1]...) } // indexes s[ind:ind+m*m:m+1] (diagonal) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range is { s.SetIndex(k, a+s.GetIndex(k)) } } if tz >= -1e-8*math.Max(nrmz, 1.0) { a := 1.0 + tz is := make([]int, 0) // indexes z[:dims['l']] if dims.At("l")[0] > 0 { is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) } // indexes z[indq[:-1]] if len(indq) > 1 { is = append(is, indq[:len(indq)-1]...) } // indexes z[ind:ind+m*m:m+1] (diagonal) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range is { z.SetIndex(k, a+z.GetIndex(k)) } } } else if primalstart == nil && dualstart != nil { if ts >= -1e-8*math.Max(nrms, 1.0) { a := 1.0 + ts is := make([]int, 0) if dims.At("l")[0] > 0 { is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) } if len(indq) > 1 { is = append(is, indq[:len(indq)-1]...) } ind := dims.Sum("l", "q") for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range is { s.SetIndex(k, a+s.GetIndex(k)) } } } else if primalstart != nil && dualstart == nil { if tz >= -1e-8*math.Max(nrmz, 1.0) { a := 1.0 + tz is := make([]int, 0) if dims.At("l")[0] > 0 { is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) } if len(indq) > 1 { is = append(is, indq[:len(indq)-1]...) } ind := dims.Sum("l", "q") for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range is { z.SetIndex(k, a+z.GetIndex(k)) } } } tau := matrix.FloatValue(1.0) kappa := matrix.FloatValue(1.0) wkappa3 := matrix.FloatValue(0.0) rx := c.Copy() hrx := c.Copy() ry := b.Copy() hry := b.Copy() rz := matrix.FloatZeros(cdim, 1) hrz := matrix.FloatZeros(cdim, 1) sigs := matrix.FloatZeros(dims.Sum("s"), 1) sigz := matrix.FloatZeros(dims.Sum("s"), 1) lmbda := matrix.FloatZeros(cdim_diag+1, 1) lmbdasq := matrix.FloatZeros(cdim_diag+1, 1) gap = sdot(s, z, dims, 0) var x1, y1 MatrixVariable var z1 *matrix.FloatMatrix var dg, dgi float64 var th *matrix.FloatMatrix var WS fVarClosure var f3 KKTFuncVar var cx, by, hz, rt float64 var hresx, resx, hresy, resy, hresz, resz float64 var dres, pres, dinfres, pinfres float64 // check point variables checkpnt.AddMatrixVar("lmbda", lmbda) checkpnt.AddMatrixVar("lmbdasq", lmbdasq) checkpnt.AddVerifiable("rx", rx) checkpnt.AddVerifiable("ry", ry) checkpnt.AddMatrixVar("rz", rz) checkpnt.AddFloatVar("resx", &resx) checkpnt.AddFloatVar("resy", &resy) checkpnt.AddFloatVar("resz", &resz) checkpnt.AddFloatVar("hresx", &hresx) checkpnt.AddFloatVar("hresy", &hresy) checkpnt.AddFloatVar("hresz", &hresz) checkpnt.AddFloatVar("cx", &cx) checkpnt.AddFloatVar("by", &by) checkpnt.AddFloatVar("hz", &hz) checkpnt.AddFloatVar("gap", &gap) checkpnt.AddFloatVar("pres", &pres) checkpnt.AddFloatVar("dres", &dres) for iter := 0; iter < maxIter+1; iter++ { checkpnt.MajorNext() checkpnt.Check("loop-start", 100) // hrx = -A'*y - G'*z Af(y, hrx, -1.0, 0.0, la.OptTrans) Gf(&matrixVar{z}, hrx, -1.0, 1.0, la.OptTrans) hresx = math.Sqrt(hrx.Dot(hrx)) // rx = hrx - c*tau // = -A'*y - G'*z - c*tau mCopy(hrx, rx) c.Axpy(rx, -tau.Float()) resx = math.Sqrt(rx.Dot(rx)) / tau.Float() // hry = A*x Af(x, hry, 1.0, 0.0, la.OptNoTrans) hresy = math.Sqrt(hry.Dot(hry)) // ry = hry - b*tau // = A*x - b*tau mCopy(hry, ry) b.Axpy(ry, -tau.Float()) resy = math.Sqrt(ry.Dot(ry)) / tau.Float() // hrz = s + G*x Gf(x, &matrixVar{hrz}, 1.0, 0.0, la.OptNoTrans) blas.AxpyFloat(s, hrz, 1.0) hresz = snrm2(hrz, dims, 0) // rz = hrz - h*tau // = s + G*x - h*tau blas.ScalFloat(rz, 0.0) blas.AxpyFloat(hrz, rz, 1.0) blas.AxpyFloat(h, rz, -tau.Float()) resz = snrm2(rz, dims, 0) / tau.Float() // rt = kappa + c'*x + b'*y + h'*z ' cx = c.Dot(x) by = b.Dot(y) hz = sdot(h, z, dims, 0) rt = kappa.Float() + cx + by + hz // Statistics for stopping criteria pcost = cx / tau.Float() dcost = -(by + hz) / tau.Float() if pcost < 0.0 { relgap = gap / -pcost } else if dcost > 0.0 { relgap = gap / dcost } else { relgap = math.NaN() } pres = math.Max(resy/resy0, resz/resz0) dres = resx / resx0 pinfres = math.NaN() if hz+by < 0.0 { pinfres = hresx / resx0 / (-hz - by) } dinfres = math.NaN() if cx < 0.0 { dinfres = math.Max(hresy/resy0, hresz/resz0) / (-cx) } if solopts.ShowProgress { if iter == 0 { // show headers of something fmt.Printf("% 10s% 12s% 10s% 8s% 7s % 5s\n", "pcost", "dcost", "gap", "pres", "dres", "k/t") } // show something fmt.Printf("%2d: % 8.4e % 8.4e % 4.0e% 7.0e% 7.0e% 7.0e\n", iter, pcost, dcost, gap, pres, dres, kappa.GetIndex(0)/tau.GetIndex(0)) } checkpnt.Check("isready", 200) if (pres <= feasTolerance && dres <= feasTolerance && (gap <= absTolerance || (!math.IsNaN(relgap) && relgap <= relTolerance))) || iter == maxIter { // done x.Scal(1.0 / tau.Float()) y.Scal(1.0 / tau.Float()) blas.ScalFloat(s, 1.0/tau.Float()) blas.ScalFloat(z, 1.0/tau.Float()) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) tz, _ = maxStep(z, dims, 0, nil) if iter == maxIter { // MaxIterations exceeded if solopts.ShowProgress { fmt.Printf("No solution. Max iterations exceeded\n") } err = errors.New("No solution. Max iterations exceeded") //sol.X = x; sol.Y = y; sol.S = s; sol.Z = z sol.Result = sets.NewFloatSet("x", "y", "s", "x") sol.Result.Append("x", x.Matrix()) sol.Result.Append("y", y.Matrix()) sol.Result.Append("s", s) sol.Result.Append("z", z) sol.Status = Unknown sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz sol.PrimalResidualCert = pinfres sol.DualResidualCert = dinfres sol.Iterations = iter return } else { // Optimal if solopts.ShowProgress { fmt.Printf("Optimal solution.\n") } err = nil //sol.X = x; sol.Y = y; sol.S = s; sol.Z = z sol.Result = sets.NewFloatSet("x", "y", "s", "x") sol.Result.Append("x", x.Matrix()) sol.Result.Append("y", y.Matrix()) sol.Result.Append("s", s) sol.Result.Append("z", z) sol.Status = Optimal sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz sol.PrimalResidualCert = math.NaN() sol.DualResidualCert = math.NaN() sol.Iterations = iter return } } else if !math.IsNaN(pinfres) && pinfres <= feasTolerance { // Primal Infeasible if solopts.ShowProgress { fmt.Printf("Primal infeasible.\n") } err = errors.New("Primal infeasible") y.Scal(1.0 / (-hz - by)) blas.ScalFloat(z, 1.0/(-hz-by)) //sol.X = nil; sol.Y = nil; sol.S = nil; sol.Z = nil ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(z, m, ind) ind += m * m } tz, _ = maxStep(z, dims, 0, nil) sol.Status = PrimalInfeasible sol.Result = sets.NewFloatSet("x", "y", "s", "x") sol.Result.Append("x", nil) sol.Result.Append("y", nil) sol.Result.Append("s", nil) sol.Result.Append("z", nil) sol.Gap = math.NaN() sol.RelativeGap = math.NaN() sol.PrimalObjective = math.NaN() sol.DualObjective = 1.0 sol.PrimalInfeasibility = math.NaN() sol.DualInfeasibility = math.NaN() sol.PrimalSlack = math.NaN() sol.DualSlack = -tz sol.PrimalResidualCert = pinfres sol.DualResidualCert = math.NaN() sol.Iterations = iter return } else if !math.IsNaN(dinfres) && dinfres <= feasTolerance { // Dual Infeasible if solopts.ShowProgress { fmt.Printf("Dual infeasible.\n") } err = errors.New("Primal infeasible") x.Scal(1.0 / (-cx)) blas.ScalFloat(s, 1.0/(-cx)) //sol.X = nil; sol.Y = nil; sol.S = nil; sol.Z = nil ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) sol.Status = PrimalInfeasible sol.Result = sets.NewFloatSet("x", "y", "s", "x") sol.Result.Append("x", nil) sol.Result.Append("y", nil) sol.Result.Append("s", nil) sol.Result.Append("z", nil) sol.Gap = math.NaN() sol.RelativeGap = math.NaN() sol.PrimalObjective = 1.0 sol.DualObjective = math.NaN() sol.PrimalInfeasibility = math.NaN() sol.DualInfeasibility = math.NaN() sol.PrimalSlack = -ts sol.DualSlack = math.NaN() sol.PrimalResidualCert = math.NaN() sol.DualResidualCert = dinfres sol.Iterations = iter return } // Compute initial scaling W: // // W * z = W^{-T} * s = lambda // dg * tau = 1/dg * kappa = lambdag. if iter == 0 { //fmt.Printf("compute scaling: lmbda=\n%v\n", lmbda.ToString("%.17f")) //fmt.Printf("s=\n%v\n", s.ToString("%.17f")) //fmt.Printf("z=\n%v\n", z.ToString("%.17f")) W, err = computeScaling(s, z, lmbda, dims, 0) checkpnt.AddScaleVar(W) // dg = sqrt( kappa / tau ) // dgi = sqrt( tau / kappa ) // lambda_g = sqrt( tau * kappa ) // // lambda_g is stored in the last position of lmbda. dg = math.Sqrt(kappa.Float() / tau.Float()) dgi = math.Sqrt(float64(tau.Float() / kappa.Float())) lmbda.SetIndex(-1, math.Sqrt(float64(tau.Float()*kappa.Float()))) //fmt.Printf("lmbda=\n%v\n", lmbda.ToString("%.17f")) //W.Print() checkpnt.Check("compute_scaling", 300) } // lmbdasq := lmbda o lmbda ssqr(lmbdasq, lmbda, dims, 0) lmbdasq.SetIndex(-1, lmbda.GetIndex(-1)*lmbda.GetIndex(-1)) // f3(x, y, z) solves // // [ 0 A' G' ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ by ]. // [ G 0 -W'*W ] [ W^{-1}*uz ] [ bz ] // // On entry, x, y, z contain bx, by, bz. // On exit, they contain ux, uy, uz. // // Also solve // // [ 0 A' G' ] [ x1 ] [ c ] // [-A 0 0 ]*[ y1 ] = -dgi * [ b ]. // [-G 0 W'*W ] [ W^{-1}*z1 ] [ h ] f3, err = kktsolver(W) if err != nil { fmt.Printf("kktsolver error=%v\n", err) return } if iter == 0 { x1 = c.Copy() y1 = b.Copy() z1 = matrix.FloatZeros(cdim, 1) checkpnt.AddVerifiable("x1", x1) checkpnt.AddMatrixVar("z1", z1) } mCopy(c, x1) x1.Scal(-1.0) mCopy(b, y1) blas.Copy(h, z1) err = f3(x1, y1, z1) //fmt.Printf("f3 result: x1=\n%v\nf3 result: z1=\n%v\n", x1, z1) x1.Scal(dgi) y1.Scal(dgi) blas.ScalFloat(z1, dgi) if err != nil { if iter == 0 && primalstart != nil && dualstart != nil { err = errors.New("Rank(A) < p or Rank([G; A]) < n") return } else { t_ := 1.0 / tau.Float() x.Scal(t_) y.Scal(t_) blas.ScalFloat(s, t_) blas.ScalFloat(z, t_) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) tz, _ = maxStep(z, dims, 0, nil) err = errors.New("Terminated (singular KKT matrix).") //sol.X = x; sol.Y = y; sol.S = s; sol.Z = z sol.Result = sets.NewFloatSet("x", "y", "s", "x") sol.Result.Append("x", x.Matrix()) sol.Result.Append("y", y.Matrix()) sol.Result.Append("s", s) sol.Result.Append("z", z) sol.Status = Unknown sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz sol.Iterations = iter return } } // f6_no_ir(x, y, z, tau, s, kappa) solves // // [ 0 ] [ 0 A' G' c ] [ ux ] [ bx ] // [ 0 ] [ -A 0 0 b ] [ uy ] [ by ] // [ W'*us ] - [ -G 0 0 h ] [ W^{-1}*uz ] = -[ bz ] // [ dg*ukappa ] [ -c' -b' -h' 0 ] [ utau/dg ] [ btau ] // // lmbda o (uz + us) = -bs // lmbdag * (utau + ukappa) = -bkappa. // // On entry, x, y, z, tau, s, kappa contain bx, by, bz, btau, // bkappa. On exit, they contain ux, uy, uz, utau, ukappa. // th = W^{-T} * h if iter == 0 { th = matrix.FloatZeros(cdim, 1) checkpnt.AddMatrixVar("th", th) } blas.Copy(h, th) scale(th, W, true, true) f6_no_ir := func(x, y MatrixVariable, z, tau, s, kappa *matrix.FloatMatrix) (err error) { // Solve // // [ 0 A' G' 0 ] [ ux ] // [ -A 0 0 b ] [ uy ] // [ -G 0 W'*W h ] [ W^{-1}*uz ] // [ -c' -b' -h' k/t ] [ utau/dg ] // // [ bx ] // [ by ] // = [ bz - W'*(lmbda o\ bs) ] // [ btau - bkappa/tau ] // // us = -lmbda o\ bs - uz // ukappa = -bkappa/lmbdag - utau. // First solve // // [ 0 A' G' ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ -by ] // [ G 0 -W'*W ] [ W^{-1}*uz ] [ -bz + W'*(lmbda o\ bs) ] minor := checkpnt.MinorTop() err = nil // y := -y = -by y.Scal(-1.0) // s := -lmbda o\ s = -lmbda o\ bs err = sinv(s, lmbda, dims, 0) blas.ScalFloat(s, -1.0) // z := -(z + W'*s) = -bz + W'*(lambda o\ bs) blas.Copy(s, ws3) checkpnt.Check("prescale", minor+5) checkpnt.MinorPush(minor + 5) err = scale(ws3, W, true, false) checkpnt.MinorPop() if err != nil { fmt.Printf("scale error: %s\n", err) } blas.AxpyFloat(ws3, z, 1.0) blas.ScalFloat(z, -1.0) checkpnt.Check("f3-call", minor+20) checkpnt.MinorPush(minor + 20) err = f3(x, y, z) checkpnt.MinorPop() checkpnt.Check("f3-return", minor+40) // Combine with solution of // // [ 0 A' G' ] [ x1 ] [ c ] // [-A 0 0 ] [ y1 ] = -dgi * [ b ] // [-G 0 W'*W ] [ W^{-1}*dzl ] [ h ] // // to satisfy // // -c'*x - b'*y - h'*W^{-1}*z + dg*tau = btau - bkappa/tau. ' // , kappa[0] := -kappa[0] / lmbd[-1] = -bkappa / lmbdag kap_ := kappa.Float() tau_ := tau.Float() kap_ = -kap_ / lmbda.GetIndex(-1) // tau[0] = tau[0] + kappa[0] / dgi = btau[0] - bkappa / tau tau_ = tau_ + kap_/dgi //tau[0] = dgi * ( tau[0] + xdot(c,x) + ydot(b,y) + // misc.sdot(th, z, dims) ) / (1.0 + misc.sdot(z1, z1, dims)) //tau_ = tau_ + blas.DotFloat(c, x) + blas.DotFloat(b, y) + sdot(th, z, dims, 0) tau_ += c.Dot(x) tau_ += b.Dot(y) tau_ += sdot(th, z, dims, 0) tau_ = dgi * tau_ / (1.0 + sdot(z1, z1, dims, 0)) tau.SetValue(tau_) x1.Axpy(x, tau_) y1.Axpy(y, tau_) blas.AxpyFloat(z1, z, tau_) blas.AxpyFloat(z, s, -1.0) kap_ = kap_ - tau_ kappa.SetValue(kap_) return } // f6(x, y, z, tau, s, kappa) solves the same system as f6_no_ir, // but applies iterative refinement. Following variables part of f6-closure // and ~ 12 is the limit. We wrap them to a structure. if iter == 0 { if refinement > 0 || solopts.Debug { WS.wx = c.Copy() WS.wy = b.Copy() WS.wz = matrix.FloatZeros(cdim, 1) WS.ws = matrix.FloatZeros(cdim, 1) WS.wtau = matrix.FloatValue(0.0) WS.wkappa = matrix.FloatValue(0.0) checkpnt.AddVerifiable("wx", WS.wx) checkpnt.AddMatrixVar("wz", WS.wz) checkpnt.AddMatrixVar("ws", WS.ws) } if refinement > 0 { WS.wx2 = c.Copy() WS.wy2 = b.Copy() WS.wz2 = matrix.FloatZeros(cdim, 1) WS.ws2 = matrix.FloatZeros(cdim, 1) WS.wtau2 = matrix.FloatValue(0.0) WS.wkappa2 = matrix.FloatValue(0.0) checkpnt.AddVerifiable("wx2", WS.wx2) checkpnt.AddMatrixVar("wz2", WS.wz2) checkpnt.AddMatrixVar("ws2", WS.ws2) } } f6 := func(x, y MatrixVariable, z, tau, s, kappa *matrix.FloatMatrix) error { var err error = nil minor := checkpnt.MinorTop() checkpnt.Check("startf6", minor+100) if refinement > 0 || solopts.Debug { mCopy(x, WS.wx) mCopy(y, WS.wy) blas.Copy(z, WS.wz) blas.Copy(s, WS.ws) WS.wtau.SetValue(tau.Float()) WS.wkappa.SetValue(kappa.Float()) } checkpnt.Check("pref6_no_ir", minor+200) err = f6_no_ir(x, y, z, tau, s, kappa) checkpnt.Check("postf6_no_ir", minor+399) for i := 0; i < refinement; i++ { mCopy(WS.wx, WS.wx2) mCopy(WS.wy, WS.wy2) blas.Copy(WS.wz, WS.wz2) blas.Copy(WS.ws, WS.ws2) WS.wtau2.SetValue(WS.wtau.Float()) WS.wkappa2.SetValue(WS.wkappa.Float()) checkpnt.Check("res-call", minor+400) checkpnt.MinorPush(minor + 400) err = res(x, y, z, tau, s, kappa, WS.wx2, WS.wy2, WS.wz2, WS.wtau2, WS.ws2, WS.wkappa2, W, dg, lmbda) checkpnt.MinorPop() checkpnt.Check("refine_pref6_no_ir", minor+500) checkpnt.MinorPush(minor + 500) err = f6_no_ir(WS.wx2, WS.wy2, WS.wz2, WS.wtau2, WS.ws2, WS.wkappa2) checkpnt.MinorPop() checkpnt.Check("refine_postf6_no_ir", minor+600) WS.wx2.Axpy(x, 1.0) WS.wy2.Axpy(y, 1.0) blas.AxpyFloat(WS.wz2, z, 1.0) blas.AxpyFloat(WS.ws2, s, 1.0) tau.SetValue(tau.Float() + WS.wtau2.Float()) kappa.SetValue(kappa.Float() + WS.wkappa2.Float()) } if solopts.Debug { checkpnt.MinorPush(minor + 700) res(x, y, z, tau, s, kappa, WS.wx, WS.wy, WS.wz, WS.wtau, WS.ws, WS.wkappa, W, dg, lmbda) checkpnt.MinorPop() fmt.Printf("KKT residuals\n") fmt.Printf(" 'x' : %.6e\n", math.Sqrt(WS.wx.Dot(WS.wx))) fmt.Printf(" 'y' : %.6e\n", math.Sqrt(WS.wy.Dot(WS.wy))) fmt.Printf(" 'z' : %.6e\n", snrm2(WS.wz, dims, 0)) fmt.Printf(" 'tau' : %.6e\n", math.Abs(WS.wtau.Float())) fmt.Printf(" 's' : %.6e\n", snrm2(WS.ws, dims, 0)) fmt.Printf(" 'kappa': %.6e\n", math.Abs(WS.wkappa.Float())) } return err } var nrm float64 = blas.Nrm2Float(lmbda) mu := math.Pow(nrm, 2.0) / (1.0 + float64(cdim_diag)) sigma := 0.0 var step, tt, tk float64 for i := 0; i < 2; i++ { // Solve // // [ 0 ] [ 0 A' G' c ] [ dx ] // [ 0 ] [ -A 0 0 b ] [ dy ] // [ W'*ds ] - [ -G 0 0 h ] [ W^{-1}*dz ] // [ dg*dkappa ] [ -c' -b' -h' 0 ] [ dtau/dg ] // // [ rx ] // [ ry ] // = - (1-sigma) [ rz ] // [ rtau ] // // lmbda o (dz + ds) = -lmbda o lmbda + sigma*mu*e // lmbdag * (dtau + dkappa) = - kappa * tau + sigma*mu // // ds = -lmbdasq if i is 0 // = -lmbdasq - dsa o dza + sigma*mu*e if i is 1 // dkappa = -lambdasq[-1] if i is 0 // = -lambdasq[-1] - dkappaa*dtaua + sigma*mu if i is 1. ind := dims.Sum("l", "q") ind2 := ind blas.Copy(lmbdasq, ds, &la.IOpt{"n", ind}) blas.ScalFloat(ds, 0.0, &la.IOpt{"offset", ind}) for _, m := range dims.At("s") { blas.Copy(lmbdasq, ds, &la.IOpt{"n", m}, &la.IOpt{"offsetx", ind2}, &la.IOpt{"offsety", ind}, &la.IOpt{"incy", m + 1}) ind += m * m ind2 += m } // dkappa[0] = lmbdasq[-1] dkappa.SetValue(lmbdasq.GetIndex(-1)) if i == 1 { blas.AxpyFloat(ws3, ds, 1.0) ind = dims.Sum("l", "q") is := make([]int, 0) // indexes: [:dims['l']] if dims.At("l")[0] > 0 { is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) } // ...[indq[:-1]] if len(indq) > 1 { is = append(is, indq[:len(indq)-1]...) } // ...[ind : ind+m*m : m+1] (diagonal) for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } //ds.Add(-sigma*mu, is...) for _, k := range is { ds.SetIndex(k, ds.GetIndex(k)-sigma*mu) } dk_ := dkappa.Float() wk_ := wkappa3.Float() dkappa.SetValue(dk_ + wk_ - sigma*mu) } // (dx, dy, dz, dtau) = (1-sigma)*(rx, ry, rz, rt) mCopy(rx, dx) dx.Scal(1.0 - sigma) mCopy(ry, dy) dy.Scal(1.0 - sigma) blas.Copy(rz, dz) blas.ScalFloat(dz, 1.0-sigma) // dtau[0] = (1.0 - sigma) * rt dtau.SetValue((1.0 - sigma) * rt) checkpnt.Check("pref6", (1+i)*1000) checkpnt.MinorPush((1 + i) * 1000) err = f6(dx, dy, dz, dtau, ds, dkappa) checkpnt.MinorPop() checkpnt.Check("postf6", (1+i)*1000+800) // Save ds o dz and dkappa * dtau for Mehrotra correction if i == 0 { blas.Copy(ds, ws3) sprod(ws3, dz, dims, 0) wkappa3.SetValue(dtau.Float() * dkappa.Float()) } // Maximum step to boundary. // // If i is 1, also compute eigenvalue decomposition of the 's' // blocks in ds, dz. The eigenvectors Qs, Qz are stored in // dsk, dzk. The eigenvalues are stored in sigs, sigz. var ts, tz float64 checkpnt.MinorPush((1+i)*1000 + 900) scale2(lmbda, ds, dims, 0, false) scale2(lmbda, dz, dims, 0, false) checkpnt.MinorPop() checkpnt.Check("post-scale2", (1+i)*1000+990) if i == 0 { ts, _ = maxStep(ds, dims, 0, nil) tz, _ = maxStep(dz, dims, 0, nil) } else { ts, _ = maxStep(ds, dims, 0, sigs) tz, _ = maxStep(dz, dims, 0, sigz) } dt_ := dtau.Float() dk_ := dkappa.Float() tt = -dt_ / lmbda.GetIndex(-1) tk = -dk_ / lmbda.GetIndex(-1) t := maxvec([]float64{0.0, ts, tz, tt, tk}) if t == 0.0 { step = 1.0 } else { if i == 0 { step = math.Min(1.0, 1.0/t) } else { step = math.Min(1.0, STEP/t) } } if i == 0 { // sigma = (1 - step)^3 sigma = (1.0 - step) * (1.0 - step) * (1.0 - step) //sigma = math.Pow((1.0 - step), EXPON) } } //fmt.Printf("** tau = %.17f, kappa = %.17f\n", tau.Float(), kappa.Float()) //fmt.Printf("** step = %.17f, sigma = %.17f\n", step, sigma) checkpnt.Check("update-xy", 7000) // Update x, y dx.Axpy(x, step) dy.Axpy(y, step) // Replace 'l' and 'q' blocks of ds and dz with the updated // variables in the current scaling. // Replace 's' blocks of ds and dz with the factors Ls, Lz in a // factorization Ls*Ls', Lz*Lz' of the updated variables in the // current scaling. // // ds := e + step*ds for 'l' and 'q' blocks. // dz := e + step*dz for 'l' and 'q' blocks. blas.ScalFloat(ds, step, &la.IOpt{"n", dims.Sum("l", "q")}) blas.ScalFloat(dz, step, &la.IOpt{"n", dims.Sum("l", "q")}) is := make([]int, 0) is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) is = append(is, indq[:len(indq)-1]...) for _, k := range is { ds.SetIndex(k, 1.0+ds.GetIndex(k)) dz.SetIndex(k, 1.0+dz.GetIndex(k)) } checkpnt.Check("update-dsdz", 7500) // ds := H(lambda)^{-1/2} * ds and dz := H(lambda)^{-1/2} * dz. // // This replaces the 'l' and 'q' components of ds and dz with the // updated variables in the current scaling. // The 's' components of ds and dz are replaced with // // diag(lmbda_k)^{1/2} * Qs * diag(lmbda_k)^{1/2} // diag(lmbda_k)^{1/2} * Qz * diag(lmbda_k)^{1/2} checkpnt.MinorPush(7500) scale2(lmbda, ds, dims, 0, true) scale2(lmbda, dz, dims, 0, true) checkpnt.MinorPop() // sigs := ( e + step*sigs ) ./ lambda for 's' blocks. // sigz := ( e + step*sigz ) ./ lambda for 's' blocks. blas.ScalFloat(sigs, step) blas.ScalFloat(sigz, step) sigs.Add(1.0) sigz.Add(1.0) sdimsum := dims.Sum("s") qdimsum := dims.Sum("l", "q") blas.TbsvFloat(lmbda, sigs, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0}, &la.IOpt{"lda", 1}, &la.IOpt{"offseta", qdimsum}) blas.TbsvFloat(lmbda, sigz, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0}, &la.IOpt{"lda", 1}, &la.IOpt{"offseta", qdimsum}) ind2 := qdimsum ind3 := 0 sdims := dims.At("s") for k := 0; k < len(sdims); k++ { m := sdims[k] for i := 0; i < m; i++ { a := math.Sqrt(sigs.GetIndex(ind3 + i)) blas.ScalFloat(ds, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m}) a = math.Sqrt(sigz.GetIndex(ind3 + i)) blas.ScalFloat(dz, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m}) } ind2 += m * m ind3 += m } checkpnt.Check("pre-update-scaling", 7700) err = updateScaling(W, lmbda, ds, dz) checkpnt.Check("post-update-scaling", 7800) // For kappa, tau block: // // dg := sqrt( (kappa + step*dkappa) / (tau + step*dtau) ) // = dg * sqrt( (1 - step*tk) / (1 - step*tt) ) // // lmbda[-1] := sqrt((tau + step*dtau) * (kappa + step*dkappa)) // = lmbda[-1] * sqrt(( 1 - step*tt) * (1 - step*tk)) dg *= math.Sqrt(1.0-step*tk) / math.Sqrt(1.0-step*tt) dgi = 1.0 / dg a := math.Sqrt(1.0-step*tk) * math.Sqrt(1.0-step*tt) lmbda.SetIndex(-1, a*lmbda.GetIndex(-1)) // Unscale s, z, tau, kappa (unscaled variables are used only to // compute feasibility residuals). ind := dims.Sum("l", "q") ind2 = ind blas.Copy(lmbda, s, &la.IOpt{"n", ind}) for _, m := range dims.At("s") { blas.ScalFloat(s, 0.0, &la.IOpt{"offset", ind2}) blas.Copy(lmbda, s, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2}, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}) ind += m ind2 += m * m } scale(s, W, true, false) ind = dims.Sum("l", "q") ind2 = ind blas.Copy(lmbda, z, &la.IOpt{"n", ind}) for _, m := range dims.At("s") { blas.ScalFloat(z, 0.0, &la.IOpt{"offset", ind2}) blas.Copy(lmbda, z, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2}, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}) ind += m ind2 += m * m } scale(z, W, false, true) kappa.SetValue(lmbda.GetIndex(-1) / dgi) tau.SetValue(lmbda.GetIndex(-1) * dgi) g := blas.Nrm2Float(lmbda, &la.IOpt{"n", lmbda.Rows() - 1}) / tau.Float() gap = g * g checkpnt.Check("end-of-loop", 8000) //fmt.Printf(" ** kappa=%.10f, tau=%.10f, gap=%.10f\n", kappa.Float(), tau.Float(), gap) } return }
// Solution of KKT equations by a dense LDL factorization of the // 3 x 3 system. // // Returns a function that (1) computes the LDL factorization of // // [ H A' GG'*W^{-1} ] // [ A 0 0 ], // [ W^{-T}*GG 0 -I ] // // given H, Df, W, where GG = [Df; G], and (2) returns a function for // solving // // [ H A' GG' ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy ] = [ by ]. // [ GG 0 -W'*W ] [ uz ] [ bz ] // // H is n x n, A is p x n, Df is mnl x n, G is N x n where // N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ). // func kktLdl(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) { p, n := A.Size() ldK := n + p + mnl + dims.At("l")[0] + dims.Sum("q") + dims.SumPacked("s") K := matrix.FloatZeros(ldK, ldK) ipiv := make([]int32, ldK) u := matrix.FloatZeros(ldK, 1) g := matrix.FloatZeros(mnl+G.Rows(), 1) //checkpnt.AddMatrixVar("u", u) //checkpnt.AddMatrixVar("K", K) factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) { var err error = nil // Zero K for each call. blas.ScalFloat(K, 0.0) if H != nil { K.SetSubMatrix(0, 0, H) } K.SetSubMatrix(n, 0, A) for k := 0; k < n; k++ { // g is (mnl + G.Rows(), 1) matrix, Df is (mnl, n), G is (N, n) if mnl > 0 { // set values g[0:mnl] = Df[,k] g.SetIndexesFromArray(Df.GetColumnArray(k, nil), matrix.MakeIndexSet(0, mnl, 1)...) } // set values g[mnl:] = G[,k] g.SetIndexesFromArray(G.GetColumnArray(k, nil), matrix.MakeIndexSet(mnl, mnl+g.Rows(), 1)...) scale(g, W, true, true) if err != nil { //fmt.Printf("scale error: %s\n", err) } pack(g, K, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsety", k*ldK + n + p}) } setDiagonal(K, n+p, n+n, ldK, ldK, -1.0) err = lapack.Sytrf(K, ipiv) if err != nil { return nil, err } solve := func(x, y, z *matrix.FloatMatrix) (err error) { // Solve // // [ H A' GG'*W^{-1} ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy [ = [ by ] // [ W^{-T}*GG 0 -I ] [ W*uz ] [ W^{-T}*bz ] // // and return ux, uy, W*uz. // // On entry, x, y, z contain bx, by, bz. On exit, they contain // the solution ux, uy, W*uz. err = nil blas.Copy(x, u) blas.Copy(y, u, &la.IOpt{"offsety", n}) err = scale(z, W, true, true) if err != nil { return } err = pack(z, u, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsety", n + p}) if err != nil { return } err = lapack.Sytrs(K, u, ipiv) if err != nil { return } blas.Copy(u, x, &la.IOpt{"n", n}) blas.Copy(u, y, &la.IOpt{"n", p}, &la.IOpt{"offsetx", n}) err = unpack(u, z, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsetx", n + p}) return } return solve, err } return factor, nil }
/* Evaluates x := H(lambda^{1/2}) * x (inverse is 'N') x := H(lambda^{-1/2}) * x (inverse is 'I'). H is the Hessian of the logarithmic barrier. */ func scale2(lmbda, x *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int, inverse bool) (err error) { err = nil //var minor int = 0 //if ! checkpnt.MinorEmpty() { // minor = checkpnt.MinorTop() //} //fmt.Printf("\n%d.%04d scale2 x=\n%v\nlmbda=\n%v\n", checkpnt.Major(), minor, // x.ToString("%.17f"), lmbda.ToString("%.17f")) //if ! checkpnt.MinorEmpty() { // checkpnt.Check("000scale2", minor) //} // For the nonlinear and 'l' blocks, // // xk := xk ./ l (inverse is 'N') // xk := xk .* l (inverse is 'I') // // where l is lmbda[:mnl+dims['l']]. ind := mnl + dims.Sum("l") if !inverse { blas.TbsvFloat(lmbda, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) } else { blas.TbmvFloat(lmbda, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}) } //if ! checkpnt.MinorEmpty() { // checkpnt.Check("010scale2", minor) //} // For 'q' blocks, if inverse is 'N', // // xk := 1/a * [ l'*J*xk; // xk[1:] - (xk[0] + l'*J*xk) / (l[0] + 1) * l[1:] ]. // // If inverse is 'I', // // xk := a * [ l'*xk; // xk[1:] + (xk[0] + l'*xk) / (l[0] + 1) * l[1:] ]. // // a = sqrt(lambda_k' * J * lambda_k), l = lambda_k / a. for _, m := range dims.At("q") { var lx, a, c, x0 float64 a = jnrm2(lmbda, m, ind) //&la_.IOpt{"n", m}, &la_.IOpt{"offset", ind}) if !inverse { lx = jdot(lmbda, x, m, ind, ind) //&la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind}, //&la_.IOpt{"offsety", ind}) lx /= a } else { lx = blas.DotFloat(lmbda, x, &la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind}) lx /= a } x0 = x.GetIndex(ind) x.SetIndex(ind, lx) c = (lx + x0) / (lmbda.GetIndex(ind)/a + 1.0) / a if !inverse { c *= -1.0 } blas.AxpyFloat(lmbda, x, c, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1}) if !inverse { a = 1.0 / a } blas.ScalFloat(x, a, &la_.IOpt{"offset", ind}, &la_.IOpt{"n", m}) ind += m } //if ! checkpnt.MinorEmpty() { // checkpnt.Check("020scale2", minor) //} // For the 's' blocks, if inverse is 'N', // // xk := vec( diag(l)^{-1/2} * mat(xk) * diag(k)^{-1/2}). // // If inverse is true, // // xk := vec( diag(l)^{1/2} * mat(xk) * diag(k)^{1/2}). // // where l is kth block of lambda. // // We scale upper and lower triangular part of mat(xk) because the // inverse operation will be applied to nonsymmetric matrices. ind2 := ind sdims := dims.At("s") for k := 0; k < len(sdims); k++ { m := sdims[k] scaleF := func(v, x float64) float64 { return math.Sqrt(v) * math.Sqrt(x) } for j := 0; j < m; j++ { c := matrix.FloatVector(lmbda.FloatArray()[ind2 : ind2+m]) c.ApplyConst(lmbda.GetIndex(ind2+j), scaleF) if !inverse { blas.Tbsv(c, x, &la_.IOpt{"n", m}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", ind + j*m}) } else { blas.Tbmv(c, x, &la_.IOpt{"n", m}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1}, &la_.IOpt{"offsetx", ind + j*m}) } } ind += m * m ind2 += m } //if ! checkpnt.MinorEmpty() { // checkpnt.Check("030scale2", minor) //} return }
// Solves a pair of primal and dual convex quadratic cone programs using custom KKT solver. // func ConeQpCustomKKT(P, q, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver, solopts *SolverOptions, initvals *sets.FloatMatrixSet) (sol *Solution, err error) { if q == nil || q.Cols() != 1 { err = errors.New("'q' must be non-nil matrix with one column") return } if P == nil || P.Rows() != q.Rows() || P.Cols() != q.Rows() { err = errors.New(fmt.Sprintf("'P' must be non-nil matrix of size (%d, %d)", q.Rows(), q.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() != 1 { err = errors.New("'h' must be non-nil matrix with one column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } err = checkConeQpDimensions(dims) if err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, q.Rows()) } if !G.SizeMatch(cdim, q.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, q.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, q.Rows()) } if A.Cols() != q.Rows() { estr := fmt.Sprintf("'A' must have %d columns", q.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } if kktsolver == nil { err = errors.New("nil kktsolver not allowed") return } mA := &matrixVarA{A} mG := &matrixVarG{G, dims} mP := &matrixVarP{P} mq := &matrixVar{q} mb := &matrixVar{b} return coneqp_problem(mP, mq, mG, h, mA, mb, dims, kktsolver, solopts, initvals) }
// Solves a pair of primal and dual cone programs using custom KKT solver and custom // matrices P, G and A. // // P must implement interface MatrixP, G must implement interface MatrixG // and A must implement interface MatrixA. // func ConeQpCustomMatrix(P MatrixP, q *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix, A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver, solopts *SolverOptions, initvals *sets.FloatMatrixSet) (sol *Solution, err error) { err = nil if q == nil || q.Cols() != 1 { err = errors.New("'q' must be non-nil matrix with one column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() != 1 { err = errors.New("'h' must be non-nil matrix with one column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } err = checkConeQpDimensions(dims) if err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") //cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if P == nil { err = errors.New("'P' must be non-nil MatrixP interface.") return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() > q.Rows() { err = errors.New("Rank(A) < p or Rank[G; A] < n") return } if kktsolver == nil { err = errors.New("nil kktsolver not allowed.") return } var mG MatrixVarG var mP MatrixVarP var mA MatrixVarA if A == nil { mA = &matrixVarA{matrix.FloatZeros(0, q.Rows())} } else { mA = &matrixIfA{A} } if G == nil { mG = &matrixVarG{matrix.FloatZeros(0, q.Rows()), dims} } else { mG = &matrixIfG{G} } mP = &matrixIfP{P} mq := &matrixVar{q} mb := &matrixVar{b} return coneqp_problem(mP, mq, mG, h, mA, mb, dims, kktsolver, solopts, initvals) }
func coneqp_solver(P MatrixVarP, q MatrixVariable, G MatrixVarG, h *matrix.FloatMatrix, A MatrixVarA, b MatrixVariable, dims *sets.DimensionSet, kktsolver KKTConeSolverVar, solopts *SolverOptions, initvals *sets.FloatMatrixSet) (sol *Solution, err error) { err = nil EXPON := 3 STEP := 0.99 sol = &Solution{Unknown, nil, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0} //var kktsolver func(*sets.FloatMatrixSet)(KKTFunc, error) = nil var refinement int var correction bool = true feasTolerance := FEASTOL absTolerance := ABSTOL relTolerance := RELTOL maxIter := MAXITERS if solopts.FeasTol > 0.0 { feasTolerance = solopts.FeasTol } if solopts.AbsTol > 0.0 { absTolerance = solopts.AbsTol } if solopts.RelTol > 0.0 { relTolerance = solopts.RelTol } if solopts.MaxIter > 0 { maxIter = solopts.MaxIter } if q == nil { err = errors.New("'q' must be non-nil MatrixVariable with one column") return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() != 1 { err = errors.New("'h' must be non-nil matrix with one column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } err = checkConeQpDimensions(dims) if err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") //cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } // Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G. indq := make([]int, 0) indq = append(indq, dims.At("l")[0]) for _, k := range dims.At("q") { indq = append(indq, indq[len(indq)-1]+k) } // Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G. inds := make([]int, 0) inds = append(inds, indq[len(indq)-1]) for _, k := range dims.At("s") { inds = append(inds, inds[len(inds)-1]+k*k) } if P == nil { err = errors.New("'P' must be non-nil MatrixVarP interface.") return } fP := func(u, v MatrixVariable, alpha, beta float64) error { return P.Pf(u, v, alpha, beta) } if G == nil { err = errors.New("'G' must be non-nil MatrixG interface.") return } fG := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error { return G.Gf(x, y, alpha, beta, trans) } // Check A and set defaults if it is nil fA := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error { return A.Af(x, y, alpha, beta, trans) } // Check b and set defaults if it is nil if b == nil { err = errors.New("'b' must be non-nil MatrixVariable interface.") return } // kktsolver(W) returns a routine for solving 3x3 block KKT system // // [ 0 A' G'*W^{-1} ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ by ]. // [ G 0 -W' ] [ uz ] [ bz ] if kktsolver == nil { err = errors.New("nil kktsolver not allowed.") return } ws3 := matrix.FloatZeros(cdim, 1) wz3 := matrix.FloatZeros(cdim, 1) checkpnt.AddMatrixVar("ws3", ws3) checkpnt.AddMatrixVar("wz3", wz3) // res := func(ux, uy MatrixVariable, uz, us *matrix.FloatMatrix, vx, vy MatrixVariable, vz, vs *matrix.FloatMatrix, W *sets.FloatMatrixSet, lmbda *matrix.FloatMatrix) (err error) { // Evaluates residual in Newton equations: // // [ vx ] [ vx ] [ 0 ] [ P A' G' ] [ ux ] // [ vy ] := [ vy ] - [ 0 ] - [ A 0 0 ] * [ uy ] // [ vz ] [ vz ] [ W'*us ] [ G 0 0 ] [ W^{-1}*uz ] // // vs := vs - lmbda o (uz + us). // vx := vx - P*ux - A'*uy - G'*W^{-1}*uz minor := checkpnt.MinorTop() checkpnt.Check("00res", minor) fP(ux, vx, -1.0, 1.0) fA(uy, vx, -1.0, 1.0, la.OptTrans) blas.Copy(uz, wz3) scale(wz3, W, true, false) fG(&matrixVar{wz3}, vx, -1.0, 1.0, la.OptTrans) // vy := vy - A*ux fA(ux, vy, -1.0, 1.0, la.OptNoTrans) checkpnt.Check("50res", minor) // vz := vz - G*ux - W'*us fG(ux, &matrixVar{vz}, -1.0, 1.0, la.OptNoTrans) blas.Copy(us, ws3) scale(ws3, W, true, false) blas.AxpyFloat(ws3, vz, -1.0) // vs := vs - lmbda o (uz + us) blas.Copy(us, ws3) blas.AxpyFloat(uz, ws3, 1.0) sprod(ws3, lmbda, dims, 0, la.OptDiag) blas.AxpyFloat(ws3, vs, -1.0) checkpnt.Check("90res", minor) return } resx0 := math.Max(1.0, math.Sqrt(q.Dot(q))) resy0 := math.Max(1.0, math.Sqrt(b.Dot(b))) resz0 := math.Max(1.0, snrm2(h, dims, 0)) //fmt.Printf("resx0: %.17f, resy0: %.17f, resz0: %.17f\n", resx0, resy0, resz0) var x, y, dx, dy, rx, ry MatrixVariable var z, s, ds, dz, rz *matrix.FloatMatrix var lmbda, lmbdasq, sigs, sigz *matrix.FloatMatrix var W *sets.FloatMatrixSet var f, f3 KKTFuncVar var resx, resy, resz, step, sigma, mu, eta float64 var gap, pcost, dcost, relgap, pres, dres, f0 float64 if cdim == 0 { // Solve // // [ P A' ] [ x ] [ -q ] // [ ] [ ] = [ ]. // [ A 0 ] [ y ] [ b ] // Wtmp := sets.NewFloatSet("d", "di", "beta", "v", "r", "rti") Wtmp.Set("d", matrix.FloatZeros(0, 1)) Wtmp.Set("di", matrix.FloatZeros(0, 1)) f3, err = kktsolver(Wtmp) if err != nil { s := fmt.Sprintf("kkt error: %s", err) err = errors.New("2: Rank(A) < p or Rank(([P; A; G;]) < n : " + s) return } x = q.Copy() x.Scal(0.0) y = b.Copy() f3(x, y, matrix.FloatZeros(0, 1)) // dres = || P*x + q + A'*y || / resx0 rx = q.Copy() fP(x, rx, 1.0, 1.0) pcost = 0.5 * (x.Dot(rx) + x.Dot(q)) fA(y, rx, 1.0, 1.0, la.OptTrans) dres = math.Sqrt(rx.Dot(rx) / resx0) ry = b.Copy() fA(x, ry, 1.0, -1.0, la.OptNoTrans) pres = math.Sqrt(ry.Dot(ry) / resy0) relgap = 0.0 if pcost == 0.0 { relgap = math.NaN() } sol.Result = sets.NewFloatSet("x", "y", "s", "z") sol.Result.Set("x", x.Matrix()) sol.Result.Set("y", y.Matrix()) sol.Result.Set("s", matrix.FloatZeros(0, 1)) sol.Result.Set("z", matrix.FloatZeros(0, 1)) sol.Status = Optimal sol.Gap = 0.0 sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = pcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = 0.0 sol.DualSlack = 0.0 return } x = q.Copy() y = b.Copy() s = matrix.FloatZeros(cdim, 1) z = matrix.FloatZeros(cdim, 1) checkpnt.AddVerifiable("x", x) checkpnt.AddVerifiable("y", y) checkpnt.AddMatrixVar("s", s) checkpnt.AddMatrixVar("z", z) var ts, tz, nrms, nrmz float64 if initvals == nil { // Factor // // [ 0 A' G' ] // [ A 0 0 ]. // [ G 0 -I ] // W = sets.NewFloatSet("d", "di", "v", "beta", "r", "rti") W.Set("d", matrix.FloatOnes(dims.At("l")[0], 1)) W.Set("di", matrix.FloatOnes(dims.At("l")[0], 1)) W.Set("beta", matrix.FloatOnes(len(dims.At("q")), 1)) for _, n := range dims.At("q") { vm := matrix.FloatZeros(n, 1) vm.SetIndex(0, 1.0) W.Append("v", vm) } for _, n := range dims.At("s") { W.Append("r", matrix.FloatIdentity(n)) W.Append("rti", matrix.FloatIdentity(n)) } checkpnt.AddScaleVar(W) f, err = kktsolver(W) if err != nil { s := fmt.Sprintf("kkt error: %s", err) err = errors.New("3: Rank(A) < p or Rank([P; G; A]) < n : " + s) return } // Solve // // [ P A' G' ] [ x ] [ -q ] // [ A 0 0 ] * [ y ] = [ b ]. // [ G 0 -I ] [ z ] [ h ] mCopy(q, x) x.Scal(-1.0) mCopy(b, y) blas.Copy(h, z) checkpnt.Check("00init", 1) err = f(x, y, z) if err != nil { s := fmt.Sprintf("kkt error: %s", err) err = errors.New("4: Rank(A) < p or Rank([P; G; A]) < n : " + s) return } blas.Copy(z, s) blas.ScalFloat(s, -1.0) checkpnt.Check("05init", 1) nrms = snrm2(s, dims, 0) ts, _ = maxStep(s, dims, 0, nil) //fmt.Printf("nrms = %.7f, ts = %.7f\n", nrms, ts) if ts >= -1e-8*math.Max(nrms, 1.0) { // a = 1.0 + ts a := 1.0 + ts is := make([]int, 0) // indexes s[:dims['l']] is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) // indexes s[indq[:-1]] is = append(is, indq[:len(indq)-1]...) ind := dims.Sum("l", "q") // indexes s[ind:ind+m*m:m+1] (diagonal) for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range is { s.SetIndex(k, a+s.GetIndex(k)) } } nrmz = snrm2(z, dims, 0) tz, _ = maxStep(z, dims, 0, nil) //fmt.Printf("nrmz = %.7f, tz = %.7f\n", nrmz, tz) if tz >= -1e-8*math.Max(nrmz, 1.0) { a := 1.0 + tz is := make([]int, 0) is = append(is, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) is = append(is, indq[:len(indq)-1]...) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { is = append(is, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range is { z.SetIndex(k, a+z.GetIndex(k)) } } } else { ix := initvals.At("x")[0] if ix != nil { mCopy(&matrixVar{ix}, x) } else { x.Scal(0.0) } is := initvals.At("s")[0] if is != nil { blas.Copy(is, s) } else { iset := make([]int, 0) iset = append(iset, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) iset = append(iset, indq[:len(indq)-1]...) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { iset = append(iset, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range iset { s.SetIndex(k, 1.0) } } iy := initvals.At("y")[0] if iy != nil { mCopy(&matrixVar{iy}, y) } else { y.Scal(0.0) } iz := initvals.At("z")[0] if iz != nil { blas.Copy(iz, z) } else { iset := make([]int, 0) iset = append(iset, matrix.MakeIndexSet(0, dims.At("l")[0], 1)...) iset = append(iset, indq[:len(indq)-1]...) ind := dims.Sum("l", "q") for _, m := range dims.At("s") { iset = append(iset, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m } for _, k := range iset { z.SetIndex(k, 1.0) } } } rx = q.Copy() ry = b.Copy() rz = matrix.FloatZeros(cdim, 1) dx = x.Copy() dy = y.Copy() dz = matrix.FloatZeros(cdim, 1) ds = matrix.FloatZeros(cdim, 1) lmbda = matrix.FloatZeros(cdim_diag, 1) lmbdasq = matrix.FloatZeros(cdim_diag, 1) sigs = matrix.FloatZeros(dims.Sum("s"), 1) sigz = matrix.FloatZeros(dims.Sum("s"), 1) checkpnt.AddVerifiable("rx", rx) checkpnt.AddVerifiable("ry", ry) checkpnt.AddVerifiable("dx", dx) checkpnt.AddVerifiable("dy", dy) //checkpnt.AddMatrixVar("rs", rs) checkpnt.AddMatrixVar("rz", rz) checkpnt.AddMatrixVar("ds", ds) checkpnt.AddMatrixVar("dz", dz) checkpnt.AddMatrixVar("lmbda", lmbda) checkpnt.AddMatrixVar("lmbdasq", lmbdasq) //var resx, resy, resz, step, sigma, mu, eta float64 //var gap, pcost, dcost, relgap, pres, dres, f0 float64 checkpnt.AddFloatVar("resx", &resx) checkpnt.AddFloatVar("resy", &resy) checkpnt.AddFloatVar("resz", &resz) checkpnt.AddFloatVar("step", &step) checkpnt.AddFloatVar("gap", &gap) checkpnt.AddFloatVar("dcost", &dcost) checkpnt.AddFloatVar("pcost", &pcost) checkpnt.AddFloatVar("dres", &dres) checkpnt.AddFloatVar("pres", &pres) checkpnt.AddFloatVar("relgap", &relgap) checkpnt.AddFloatVar("sigma", &sigma) var WS fVarClosure gap = sdot(s, z, dims, 0) for iter := 0; iter < maxIter+1; iter++ { checkpnt.MajorNext() checkpnt.Check("loopstart", 10) // f0 = (1/2)*x'*P*x + q'*x + r and rx = P*x + q + A'*y + G'*z. mCopy(q, rx) fP(x, rx, 1.0, 1.0) f0 = 0.5 * (x.Dot(rx) + x.Dot(q)) fA(y, rx, 1.0, 1.0, la.OptTrans) fG(&matrixVar{z}, rx, 1.0, 1.0, la.OptTrans) resx = math.Sqrt(rx.Dot(rx)) // ry = A*x - b mCopy(b, ry) fA(x, ry, 1.0, -1.0, la.OptNoTrans) resy = math.Sqrt(ry.Dot(ry)) // rz = s + G*x - h blas.Copy(s, rz) blas.AxpyFloat(h, rz, -1.0) fG(x, &matrixVar{rz}, 1.0, 1.0, la.OptNoTrans) resz = snrm2(rz, dims, 0) //fmt.Printf("resx: %.17f, resy: %.17f, resz: %.17f\n", resx, resy, resz) // Statistics for stopping criteria. // pcost = (1/2)*x'*P*x + q'*x // dcost = (1/2)*x'*P*x + q'*x + y'*(A*x-b) + z'*(G*x-h) ' // = (1/2)*x'*P*x + q'*x + y'*(A*x-b) + z'*(G*x-h+s) - z'*s // = (1/2)*x'*P*x + q'*x + y'*ry + z'*rz - gap pcost = f0 dcost = f0 + y.Dot(ry) + sdot(z, rz, dims, 0) - gap if pcost < 0.0 { relgap = gap / -pcost } else if dcost > 0.0 { relgap = gap / dcost } else { relgap = math.NaN() } pres = math.Max(resy/resy0, resz/resz0) dres = resx / resx0 if solopts.ShowProgress { if iter == 0 { // show headers of something fmt.Printf("% 10s% 12s% 10s% 8s% 7s\n", "pcost", "dcost", "gap", "pres", "dres") } // show something fmt.Printf("%2d: % 8.4e % 8.4e % 4.0e% 7.0e% 7.0e\n", iter, pcost, dcost, gap, pres, dres) } checkpnt.Check("stoptest", 100) if pres <= feasTolerance && dres <= feasTolerance && (gap <= absTolerance || (!math.IsNaN(relgap) && relgap <= relTolerance)) || iter == maxIter { ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) tz, _ = maxStep(z, dims, 0, nil) if iter == maxIter { // terminated on max iterations. sol.Status = Unknown err = errors.New("Terminated (maximum iterations reached)") fmt.Printf("Terminated (maximum iterations reached)\n") return } // optimal solution found //fmt.Print("Optimal solution.\n") err = nil sol.Result = sets.NewFloatSet("x", "y", "s", "z") sol.Result.Set("x", x.Matrix()) sol.Result.Set("y", y.Matrix()) sol.Result.Set("s", s) sol.Result.Set("z", z) sol.Status = Optimal sol.Gap = gap sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz sol.PrimalResidualCert = math.NaN() sol.DualResidualCert = math.NaN() sol.Iterations = iter return } // Compute initial scaling W and scaled iterates: // // W * z = W^{-T} * s = lambda. // // lmbdasq = lambda o lambda. if iter == 0 { W, err = computeScaling(s, z, lmbda, dims, 0) checkpnt.AddScaleVar(W) } ssqr(lmbdasq, lmbda, dims, 0) f3, err = kktsolver(W) if err != nil { if iter == 0 { s := fmt.Sprintf("kkt error: %s", err) err = errors.New("5: Rank(A) < p or Rank([P; A; G]) < n : " + s) return } else { ind := dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) tz, _ = maxStep(z, dims, 0, nil) // terminated (singular KKT matrix) fmt.Printf("Terminated (singular KKT matrix).\n") err = errors.New("Terminated (singular KKT matrix).") sol.Result = sets.NewFloatSet("x", "y", "s", "z") sol.Result.Set("x", x.Matrix()) sol.Result.Set("y", y.Matrix()) sol.Result.Set("s", s) sol.Result.Set("z", z) sol.Status = Unknown sol.RelativeGap = relgap sol.PrimalObjective = pcost sol.DualObjective = dcost sol.PrimalInfeasibility = pres sol.DualInfeasibility = dres sol.PrimalSlack = -ts sol.DualSlack = -tz sol.Iterations = iter return } } // f4_no_ir(x, y, z, s) solves // // [ 0 ] [ P A' G' ] [ ux ] [ bx ] // [ 0 ] + [ A 0 0 ] * [ uy ] = [ by ] // [ W'*us ] [ G 0 0 ] [ W^{-1}*uz ] [ bz ] // // lmbda o (uz + us) = bs. // // On entry, x, y, z, s contain bx, by, bz, bs. // On exit, they contain ux, uy, uz, us. f4_no_ir := func(x, y MatrixVariable, z, s *matrix.FloatMatrix) error { // Solve // // [ P A' G' ] [ ux ] [ bx ] // [ A 0 0 ] [ uy ] = [ by ] // [ G 0 -W'*W ] [ W^{-1}*uz ] [ bz - W'*(lmbda o\ bs) ] // // us = lmbda o\ bs - uz. // // On entry, x, y, z, s contains bx, by, bz, bs. // On exit they contain x, y, z, s. minor := checkpnt.MinorTop() checkpnt.Check("f4_no_ir_start", minor) // s := lmbda o\ s // = lmbda o\ bs sinv(s, lmbda, dims, 0) // z := z - W'*s // = bz - W'*(lambda o\ bs) blas.Copy(s, ws3) scale(ws3, W, true, false) blas.AxpyFloat(ws3, z, -1.0) checkpnt.Check("f4_no_ir_f3", minor+50) err := f3(x, y, z) if err != nil { return err } checkpnt.Check("f4_no_ir_f3", minor+60) // s := s - z // = lambda o\ bs - uz. blas.AxpyFloat(z, s, -1.0) checkpnt.Check("f4_no_ir_f3", minor+90) return nil } if iter == 0 { if refinement > 0 || solopts.Debug { WS.wx = q.Copy() WS.wy = y.Copy() WS.ws = matrix.FloatZeros(cdim, 1) WS.wz = matrix.FloatZeros(cdim, 1) checkpnt.AddVerifiable("wx", WS.wx) checkpnt.AddVerifiable("wy", WS.wy) checkpnt.AddMatrixVar("ws", WS.ws) checkpnt.AddMatrixVar("wz", WS.wz) } if refinement > 0 { WS.wx2 = q.Copy() WS.wy2 = y.Copy() WS.ws2 = matrix.FloatZeros(cdim, 1) WS.wz2 = matrix.FloatZeros(cdim, 1) checkpnt.AddVerifiable("wx2", WS.wx2) checkpnt.AddVerifiable("wy2", WS.wy2) checkpnt.AddMatrixVar("ws2", WS.ws2) checkpnt.AddMatrixVar("wz2", WS.wz2) } } f4 := func(x, y MatrixVariable, z, s *matrix.FloatMatrix) (err error) { minor := checkpnt.MinorTop() checkpnt.Check("f4start", minor) err = nil if refinement > 0 || solopts.Debug { mCopy(x, WS.wx) mCopy(y, WS.wy) blas.Copy(z, WS.wz) blas.Copy(s, WS.ws) } checkpnt.MinorPush(minor + 100) err = f4_no_ir(x, y, z, s) checkpnt.MinorPop() for i := 0; i < refinement; i++ { mCopy(WS.wx, WS.wx2) mCopy(WS.wy, WS.wy2) blas.Copy(WS.wz, WS.wz2) blas.Copy(WS.ws, WS.ws2) checkpnt.MinorPush(minor + (i+1)*300) res(x, y, z, s, WS.wx2, WS.wy2, WS.wz2, WS.ws2, W, lmbda) checkpnt.MinorPop() checkpnt.MinorPush(minor + (i+1)*500) f4_no_ir(WS.wx2, WS.wy2, WS.wz2, WS.ws2) checkpnt.MinorPop() WS.wx2.Axpy(x, 1.0) WS.wy2.Axpy(y, 1.0) blas.AxpyFloat(WS.wz2, z, 1.0) blas.AxpyFloat(WS.ws2, s, 1.0) } checkpnt.Check("f4end", minor+1500) return } //var mu, sigma, eta float64 mu = gap / float64(dims.Sum("l", "s")+len(dims.At("q"))) sigma, eta = 0.0, 0.0 for i := 0; i < 2; i++ { // Solve // // [ 0 ] [ P A' G' ] [ dx ] // [ 0 ] + [ A 0 0 ] * [ dy ] = -(1 - eta) * r // [ W'*ds ] [ G 0 0 ] [ W^{-1}*dz ] // // lmbda o (dz + ds) = -lmbda o lmbda + sigma*mu*e (i=0) // lmbda o (dz + ds) = -lmbda o lmbda - dsa o dza // + sigma*mu*e (i=1) where dsa, dza // are the solution for i=0. minor_base := (i + 1) * 2000 // ds = -lmbdasq + sigma * mu * e (if i is 0) // = -lmbdasq - dsa o dza + sigma * mu * e (if i is 1), // where ds, dz are solution for i is 0. blas.ScalFloat(ds, 0.0) if correction && i == 1 { blas.AxpyFloat(ws3, ds, -1.0) } blas.AxpyFloat(lmbdasq, ds, -1.0, &la.IOpt{"n", dims.Sum("l", "q")}) ind := dims.At("l")[0] ds.Add(sigma*mu, matrix.MakeIndexSet(0, ind, 1)...) for _, m := range dims.At("q") { ds.SetIndex(ind, sigma*mu+ds.GetIndex(ind)) ind += m } ind2 := ind for _, m := range dims.At("s") { blas.AxpyFloat(lmbdasq, ds, -1.0, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}, &la.IOpt{"offsetx", ind2}, &la.IOpt{"offsety", ind}) ds.Add(sigma*mu, matrix.MakeIndexSet(ind, ind+m*m, m+1)...) ind += m * m ind2 += m } checkpnt.Check("00loop01", minor_base) // (dx, dy, dz) := -(1 - eta) * (rx, ry, rz) //blas.ScalFloat(dx, 0.0) //blas.AxpyFloat(rx, dx, -1.0+eta) dx.Scal(0.0) rx.Axpy(dx, -1.0+eta) dy.Scal(0.0) ry.Axpy(dy, -1.0+eta) blas.ScalFloat(dz, 0.0) blas.AxpyFloat(rz, dz, -1.0+eta) //fmt.Printf("== Calling f4 %d\n", i) //fmt.Printf("dx=\n%v\n", dx.ToString("%.17f")) //fmt.Printf("ds=\n%v\n", ds.ToString("%.17f")) //fmt.Printf("dz=\n%v\n", dz.ToString("%.17f")) //fmt.Printf("== Entering f4 %d\n", i) checkpnt.MinorPush(minor_base) err = f4(dx, dy, dz, ds) checkpnt.MinorPop() if err != nil { if iter == 0 { s := fmt.Sprintf("kkt error: %s", err) err = errors.New("6: Rank(A) < p or Rank([P; A; G]) < n : " + s) return } else { ind = dims.Sum("l", "q") for _, m := range dims.At("s") { symm(s, m, ind) symm(z, m, ind) ind += m * m } ts, _ = maxStep(s, dims, 0, nil) tz, _ = maxStep(z, dims, 0, nil) return } } dsdz := sdot(ds, dz, dims, 0) if correction && i == 0 { blas.Copy(ds, ws3) sprod(ws3, dz, dims, 0) } // Maximum step to boundary. // // If i is 1, also compute eigenvalue decomposition of the 's' // blocks in ds, dz. The eigenvectors Qs, Qz are stored in // dsk, dzk. The eigenvalues are stored in sigs, sigz. scale2(lmbda, ds, dims, 0, false) scale2(lmbda, dz, dims, 0, false) checkpnt.Check("maxstep", minor_base+1500) if i == 0 { ts, _ = maxStep(ds, dims, 0, nil) tz, _ = maxStep(dz, dims, 0, nil) } else { ts, _ = maxStep(ds, dims, 0, sigs) tz, _ = maxStep(dz, dims, 0, sigz) } t := maxvec([]float64{0.0, ts, tz}) //fmt.Printf("== t=%.17f from %v\n", t, []float64{ts, tz}) if t == 0.0 { step = 1.0 } else { if i == 0 { step = math.Min(1.0, 1.0/t) } else { step = math.Min(1.0, STEP/t) } } if i == 0 { m := math.Max(0.0, 1.0-step+dsdz/gap*(step*step)) sigma = math.Pow(math.Min(1.0, m), float64(EXPON)) eta = 0.0 } //fmt.Printf("== step=%.17f sigma=%.17f dsdz=%.17f\n", step, sigma, dsdz) } checkpnt.Check("updatexy", 8000) dx.Axpy(x, step) dy.Axpy(y, step) //fmt.Printf("x=\n%v\n", x.ConvertToString()) //fmt.Printf("y=\n%v\n", y.ConvertToString()) //fmt.Printf("ds=\n%v\n", ds.ConvertToString()) //fmt.Printf("dz=\n%v\n", dz.ConvertToString()) // We will now replace the 'l' and 'q' blocks of ds and dz with // the updated iterates in the current scaling. // We also replace the 's' blocks of ds and dz with the factors // Ls, Lz in a factorization Ls*Ls', Lz*Lz' of the updated variables // in the current scaling. // ds := e + step*ds for nonlinear, 'l' and 'q' blocks. // dz := e + step*dz for nonlinear, 'l' and 'q' blocks. blas.ScalFloat(ds, step, &la.IOpt{"n", dims.Sum("l", "q")}) blas.ScalFloat(dz, step, &la.IOpt{"n", dims.Sum("l", "q")}) ind := dims.At("l")[0] is := matrix.MakeIndexSet(0, ind, 1) ds.Add(1.0, is...) dz.Add(1.0, is...) for _, m := range dims.At("q") { ds.SetIndex(ind, 1.0+ds.GetIndex(ind)) dz.SetIndex(ind, 1.0+dz.GetIndex(ind)) ind += m } checkpnt.Check("updatedsdz", 8010) // ds := H(lambda)^{-1/2} * ds and dz := H(lambda)^{-1/2} * dz. // // This replaces the 'l' and 'q' components of ds and dz with the // updated variables in the current scaling. // The 's' components of ds and dz are replaced with // // diag(lmbda_k)^{1/2} * Qs * diag(lmbda_k)^{1/2} // diag(lmbda_k)^{1/2} * Qz * diag(lmbda_k)^{1/2} scale2(lmbda, ds, dims, 0, true) scale2(lmbda, dz, dims, 0, true) checkpnt.Check("scale2", 8030) // sigs := ( e + step*sigs ) ./ lambda for 's' blocks. // sigz := ( e + step*sigz ) ./ lambda for 's' blocks. blas.ScalFloat(sigs, step) blas.ScalFloat(sigz, step) sigs.Add(1.0) sigz.Add(1.0) sdimsum := dims.Sum("s") qdimsum := dims.Sum("l", "q") blas.TbsvFloat(lmbda, sigs, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0}, &la.IOpt{"lda", 1}, &la.IOpt{"offseta", qdimsum}) blas.TbsvFloat(lmbda, sigz, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0}, &la.IOpt{"lda", 1}, &la.IOpt{"offseta", qdimsum}) ind2 := qdimsum ind3 := 0 sdims := dims.At("s") for k := 0; k < len(sdims); k++ { m := sdims[k] for i := 0; i < m; i++ { a := math.Sqrt(sigs.GetIndex(ind3 + i)) blas.ScalFloat(ds, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m}) a = math.Sqrt(sigz.GetIndex(ind3 + i)) blas.ScalFloat(dz, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m}) } ind2 += m * m ind3 += m } checkpnt.Check("updatescaling", 8050) err = updateScaling(W, lmbda, ds, dz) checkpnt.Check("afterscaling", 8060) // Unscale s, z, tau, kappa (unscaled variables are used only to // compute feasibility residuals). ind = dims.Sum("l", "q") ind2 = ind blas.Copy(lmbda, s, &la.IOpt{"n", ind}) for _, m := range dims.At("s") { blas.ScalFloat(s, 0.0, &la.IOpt{"offset", ind2}) blas.Copy(lmbda, s, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2}, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}) ind += m ind2 += m * m } scale(s, W, true, false) ind = dims.Sum("l", "q") ind2 = ind blas.Copy(lmbda, z, &la.IOpt{"n", ind}) for _, m := range dims.At("s") { blas.ScalFloat(z, 0.0, &la.IOpt{"offset", ind2}) blas.Copy(lmbda, z, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2}, &la.IOpt{"n", m}, &la.IOpt{"incy", m + 1}) ind += m ind2 += m * m } scale(z, W, false, true) gap = blas.DotFloat(lmbda, lmbda) checkpnt.Check("eol", 8900) //fmt.Printf("== gap = %.17f\n", gap) } return }
// Solves a convex optimization problem with a linear objective // // minimize c'*x // subject to f(x) <= 0 // G*x <= h // A*x = b. // // using custom KTT equation solver and custom constraints G and A. // func CplCustomMatrix(F ConvexProg, c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix, A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if c == nil { err = errors.New("'c' must be non nil matrix") return } if !c.SizeMatch(x0.Size()) { err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } mc := matrixVar{c} mb := matrixVar{b} var mG MatrixVarG var mA MatrixVarA if G == nil { mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims} } else { mG = &matrixIfG{G} } if A == nil { mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())} } else { mA = &matrixIfA{A} } return cpl_problem(F, &mc, mG, h, mA, &mb, dims, kktsolver, solopts, x0, mnl) }
// Solves a pair of primal and dual convex quadratic cone programs // // minimize (1/2)*x'*P*x + q'*x // subject to G*x + s = h // A*x = b // s >= 0 // // maximize -(1/2)*(q + G'*z + A'*y)' * pinv(P) * (q + G'*z + A'*y) // - h'*z - b'*y // subject to q + G'*z + A'*y in range(P) // z >= 0. // // The inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. // The next N cones are 2nd order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{G.Rows()}, q: []int{}, s: []int{}. // // Argument initval contains optional starting points for primal and // dual problems. If non-nil then initval is a FloatMatrixSet having following entries. // // initvals.At("x")[0] starting point for x // initvals.At("s")[0] starting point for s // initvals.At("y")[0] starting point for y // initvals.At("z")[0] starting point for z // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] solution for x // Result.At("y")[0] solution for y // Result.At("s")[0] solution for s // Result.At("z")[0] solution for z // func ConeQp(P, q, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions, initvals *sets.FloatMatrixSet) (sol *Solution, err error) { if q == nil || q.Cols() != 1 { err = errors.New("'q' must be non-nil matrix with one column") return } if P == nil || P.Rows() != q.Rows() || P.Cols() != q.Rows() { err = errors.New(fmt.Sprintf("'P' must be non-nil matrix of size (%d, %d)", q.Rows(), q.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() != 1 { err = errors.New("'h' must be non-nil matrix with one column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } err = checkConeQpDimensions(dims) if err != nil { return } cdim := dims.Sum("l", "q") + dims.SumSquared("s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, q.Rows()) } if !G.SizeMatch(cdim, q.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, q.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, q.Rows()) } if A.Cols() != q.Rows() { estr := fmt.Sprintf("'A' must have %d columns", q.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "ldl" } else { solvername = "chol2" } } var factor kktFactor var kktsolver KKTConeSolver = nil if kktfunc, ok := solvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, 0) if err != nil { return nil, err } kktsolver = func(W *sets.FloatMatrixSet) (KKTFunc, error) { return factor(W, P, nil) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } mA := &matrixVarA{A} mG := &matrixVarG{G, dims} mP := &matrixVarP{P} mq := &matrixVar{q} mb := &matrixVar{b} return coneqp_problem(mP, mq, mG, h, mA, mb, dims, kktsolver, solopts, initvals) }
// Solves a convex optimization problem with a linear objective // // minimize c'*x // subject to f(x) <= 0 // G*x <= h // A*x = b. // // f is vector valued, convex and twice differentiable. The linear // inequalities are with respect to a cone C defined as the Cartesian // product of N + M + 1 cones: // // C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}. // // The first cone C_0 is the nonnegative orthant of dimension ml. The // next N cones are second order cones of dimension r[0], ..., r[N-1]. // The second order cone of dimension m is defined as // // { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }. // // The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0. // // The structure of C is specified by DimensionSet dims which holds following sets // // dims.At("l") l, the dimension of the nonnegative orthant (array of length 1) // dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones // dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive // semidefinite cones // // The default value for dims is l: []int{h.Rows()}, q: []int{}, s: []int{}. // // On exit Solution contains the result and information about the accurancy of the // solution. if SolutionStatus is Optimal then Solution.Result contains solutions // for the problems. // // Result.At("x")[0] primal solution // Result.At("snl")[0] non-linear constraint slacks // Result.At("sl")[0] linear constraint slacks // Result.At("y")[0] values for linear equality constraints y // Result.At("znl")[0] values of dual variables for nonlinear inequalities // Result.At("zl")[0] values of dual variables for linear inequalities // // If err is non-nil then sol is nil and err contains information about the argument or // computation error. // func Cpl(F ConvexProg, c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions) (sol *Solution, err error) { var mnl int var x0 *matrix.FloatMatrix mnl, x0, err = F.F0() if err != nil { return } if x0.Cols() != 1 { err = errors.New("'x0' must be matrix with one column") return } if c == nil { err = errors.New("'c' must be non nil matrix") return } if !c.SizeMatch(x0.Size()) { err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows())) return } if h == nil { h = matrix.FloatZeros(0, 1) } if h.Cols() > 1 { err = errors.New("'h' must be matrix with 1 column") return } if dims == nil { dims = sets.NewDimensionSet("l", "q", "s") dims.Set("l", []int{h.Rows()}) } cdim := dims.Sum("l", "q") + dims.SumSquared("s") //cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") //cdim_diag := dims.Sum("l", "q", "s") if h.Rows() != cdim { err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim)) return } if G == nil { G = matrix.FloatZeros(0, c.Rows()) } if !G.SizeMatch(cdim, c.Rows()) { estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows()) err = errors.New(estr) return } // Check A and set defaults if it is nil if A == nil { // zeros rows reduces Gemv to vector products A = matrix.FloatZeros(0, c.Rows()) } if A.Cols() != c.Rows() { estr := fmt.Sprintf("'A' must have %d columns", c.Rows()) err = errors.New(estr) return } // Check b and set defaults if it is nil if b == nil { b = matrix.FloatZeros(0, 1) } if b.Cols() != 1 { estr := fmt.Sprintf("'b' must be a matrix with 1 column") err = errors.New(estr) return } if b.Rows() != A.Rows() { estr := fmt.Sprintf("'b' must have length %d", A.Rows()) err = errors.New(estr) return } var mc = matrixVar{c} var mb = matrixVar{b} var mA = matrixVarA{A} var mG = matrixVarG{G, dims} solvername := solopts.KKTSolverName if len(solvername) == 0 { if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 { solvername = "chol" } else { solvername = "chol2" } } var factor kktFactor var kktsolver KKTCpSolver = nil if kktfunc, ok := solvers[solvername]; ok { // kkt function returns us problem spesific factor function. factor, err = kktfunc(G, dims, A, mnl) // solver is kktsolver = func(W *sets.FloatMatrixSet, x, z *matrix.FloatMatrix) (KKTFunc, error) { _, Df, H, err := F.F2(x, z) if err != nil { return nil, err } return factor(W, H, Df) } } else { err = errors.New(fmt.Sprintf("solver '%s' not known", solvername)) return } //return CplCustom(F, c, &mG, h, &mA, b, dims, kktsolver, solopts) return cpl_problem(F, &mc, &mG, h, &mA, &mb, dims, kktsolver, solopts, x0, mnl) }
// Solution of KKT equations with zero 1,1 block, by eliminating the // equality constraints via a QR factorization, and solving the // reduced KKT system by another QR factorization. // // Computes the QR factorization // // A' = [Q1, Q2] * [R1; 0] // // and returns a function that (1) computes the QR factorization // // W^{-T} * G * Q2 = Q3 * R3 // // (with columns of W^{-T}*G in packed storage), and (2) returns a function for solving // // [ 0 A' G' ] [ ux ] [ bx ] // [ A 0 0 ] * [ uy ] = [ by ]. // [ G 0 -W'*W ] [ uz ] [ bz ] // // A is p x n and G is N x n where N = dims['l'] + sum(dims['q']) + // sum( k**2 for k in dims['s'] ). // func kktQr(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) { p, n := A.Size() cdim := dims.Sum("l", "q") + dims.SumSquared("s") cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s") QA := A.Transpose() tauA := matrix.FloatZeros(p, 1) lapack.Geqrf(QA, tauA) Gs := matrix.FloatZeros(cdim, n) tauG := matrix.FloatZeros(n-p, 1) u := matrix.FloatZeros(cdim_pckd, 1) vv := matrix.FloatZeros(n, 1) w := matrix.FloatZeros(cdim_pckd, 1) checkpnt.AddMatrixVar("tauA", tauA) checkpnt.AddMatrixVar("tauG", tauG) checkpnt.AddMatrixVar("Gs", Gs) checkpnt.AddMatrixVar("qr_u", u) checkpnt.AddMatrixVar("qr_vv", vv) factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) { var err error = nil minor := 0 if !checkpnt.MinorEmpty() { minor = checkpnt.MinorTop() } // Gs = W^{-T}*G, in packed storage. blas.Copy(G, Gs) //checkpnt.Check("00factor_qr", minor) scale(Gs, W, true, true) //checkpnt.Check("01factor_qr", minor) pack2(Gs, dims, 0) //checkpnt.Check("02factor_qr", minor) // Gs := [ Gs1, Gs2 ] // = Gs * [ Q1, Q2 ] lapack.Ormqr(QA, tauA, Gs, la.OptRight, &la.IOpt{"m", cdim_pckd}) //checkpnt.Check("03factor_qr", minor) // QR factorization Gs2 := [ Q3, Q4 ] * [ R3; 0 ] lapack.Geqrf(Gs, tauG, &la.IOpt{"n", n - p}, &la.IOpt{"m", cdim_pckd}, &la.IOpt{"offseta", Gs.Rows() * p}) checkpnt.Check("10factor_qr", minor) solve := func(x, y, z *matrix.FloatMatrix) (err error) { // On entry, x, y, z contain bx, by, bz. On exit, they // contain the solution x, y, W*z of // // [ 0 A' G'*W^{-1} ] [ x ] [bx ] // [ A 0 0 ] * [ y ] = [by ]. // [ W^{-T}*G 0 -I ] [ W*z ] [W^{-T}*bz] // // The system is solved in five steps: // // w := W^{-T}*bz - Gs1*R1^{-T}*by // u := R3^{-T}*Q2'*bx + Q3'*w // W*z := Q3*u - w // y := R1^{-1} * (Q1'*bx - Gs1'*(W*z)) // x := [ Q1, Q2 ] * [ R1^{-T}*by; R3^{-1}*u ] minor := 0 if !checkpnt.MinorEmpty() { minor = checkpnt.MinorTop() } // w := W^{-T} * bz in packed storage scale(z, W, true, true) pack(z, w, dims) //checkpnt.Check("00solve_qr", minor) // vv := [ Q1'*bx; R3^{-T}*Q2'*bx ] blas.Copy(x, vv) lapack.Ormqr(QA, tauA, vv, la.OptTrans) lapack.Trtrs(Gs, vv, la.OptUpper, la.OptTrans, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", Gs.Rows() * p}, &la.IOpt{"offsetb", p}) //checkpnt.Check("10solve_qr", minor) // x[:p] := R1^{-T} * by blas.Copy(y, x) lapack.Trtrs(QA, x, la.OptUpper, la.OptTrans, &la.IOpt{"n", p}) //checkpnt.Check("20solve_qr", minor) // w := w - Gs1 * x[:p] // = W^{-T}*bz - Gs1*by blas.GemvFloat(Gs, x, w, -1.0, 1.0, &la.IOpt{"n", p}, &la.IOpt{"m", cdim_pckd}) //checkpnt.Check("30solve_qr", minor) // u := [ Q3'*w + v[p:]; 0 ] // = [ Q3'*w + R3^{-T}*Q2'*bx; 0 ] blas.Copy(w, u) lapack.Ormqr(Gs, tauG, u, la.OptTrans, &la.IOpt{"k", n - p}, &la.IOpt{"offseta", Gs.Rows() * p}, &la.IOpt{"m", cdim_pckd}) blas.AxpyFloat(vv, u, 1.0, &la.IOpt{"offsetx", p}, &la.IOpt{"n", n - p}) blas.ScalFloat(u, 0.0, &la.IOpt{"offset", n - p}) //checkpnt.Check("40solve_qr", minor) // x[p:] := R3^{-1} * u[:n-p] blas.Copy(u, x, &la.IOpt{"offsety", p}, &la.IOpt{"n", n - p}) lapack.Trtrs(Gs, x, la.OptUpper, &la.IOpt{"n", n - p}, &la.IOpt{"offset", Gs.Rows() * p}, &la.IOpt{"offsetb", p}) //checkpnt.Check("50solve_qr", minor) // x is now [ R1^{-T}*by; R3^{-1}*u[:n-p] ] // x := [Q1 Q2]*x lapack.Ormqr(QA, tauA, x) //checkpnt.Check("60solve_qr", minor) // u := [Q3, Q4] * u - w // = Q3 * u[:n-p] - w lapack.Ormqr(Gs, tauG, u, &la.IOpt{"k", n - p}, &la.IOpt{"m", cdim_pckd}, &la.IOpt{"offseta", Gs.Rows() * p}) blas.AxpyFloat(w, u, -1.0) //checkpnt.Check("70solve_qr", minor) // y := R1^{-1} * ( v[:p] - Gs1'*u ) // = R1^{-1} * ( Q1'*bx - Gs1'*u ) blas.Copy(vv, y, &la.IOpt{"n", p}) blas.GemvFloat(Gs, u, y, -1.0, 1.0, &la.IOpt{"m", cdim_pckd}, &la.IOpt{"n", p}, la.OptTrans) lapack.Trtrs(QA, y, la.OptUpper, &la.IOpt{"n", p}) //checkpnt.Check("80solve_qr", minor) unpack(u, z, dims) checkpnt.Check("90solve_qr", minor) return nil } return solve, err } return factor, nil }