func (b *executorBuilder) columnToPBExpr(client kv.Client, column *expression.Column, tbl *model.TableInfo) *tipb.Expr { if !client.SupportRequestType(kv.ReqTypeSelect, int64(tipb.ExprType_ColumnRef)) { return nil } switch column.GetType().Tp { case mysql.TypeBit, mysql.TypeSet, mysql.TypeEnum, mysql.TypeDecimal, mysql.TypeGeometry, mysql.TypeDate, mysql.TypeNewDate, mysql.TypeDatetime, mysql.TypeTimestamp, mysql.TypeYear: return nil } id := int64(-1) for _, col := range tbl.Columns { if tbl.Name == column.TblName && col.Name == column.ColName { id = col.ID break } } // Zero Column ID is not a column from table, can not support for now. if id == 0 { return nil } // TODO:If the column ID isn't in fields, it means the column is from an outer table, // its value is available to use. if id == -1 { return nil } return &tipb.Expr{ Tp: tipb.ExprType_ColumnRef.Enum(), Val: codec.EncodeInt(nil, id)} }
func findColumnIndexByGroup(groups []LogicalPlan, col *expression.Column) int { for i, plan := range groups { idx := plan.GetSchema().GetIndex(col) if idx != -1 { return i } } log.Errorf("Unknown columns %s, from id %s, position %d", col.ToString(), col.FromID, col.Position) return -1 }
func (e *havingAndOrderbyResolver) addProjectionExpr(v *ast.ColumnNameExpr, projCol *expression.Column) { // Avoid to append same column repeatly. for i, expr := range e.proj.Exprs { if expr == projCol { e.mapper[v] = e.proj.schema[i] return } } e.proj.Exprs = append(e.proj.Exprs, projCol) schemaCols, _ := projCol.DeepCopy().(*expression.Column) e.mapper[v] = schemaCols e.proj.schema = append(e.proj.schema, schemaCols) }
func (pc pbConverter) columnToPBExpr(column *expression.Column) *tipb.Expr { if !pc.client.SupportRequestType(kv.ReqTypeSelect, int64(tipb.ExprType_ColumnRef)) { return nil } switch column.GetType().Tp { case mysql.TypeBit, mysql.TypeSet, mysql.TypeEnum, mysql.TypeGeometry, mysql.TypeDecimal: return nil } id := column.ID // Zero Column ID is not a column from table, can not support for now. if id == 0 || id == -1 { return nil } return &tipb.Expr{ Tp: tipb.ExprType_ColumnRef, Val: codec.EncodeInt(nil, id)} }
func shallowCopyColumn(colDest, colSrc *expression.Column) *expression.Column { colDest.Correlated = colSrc.Correlated colDest.FromID = colSrc.FromID colDest.Position = colSrc.Position colDest.ID = colSrc.ID colDest.IsAggOrSubq = colSrc.IsAggOrSubq colDest.RetType = colSrc.RetType return colDest }
// propagateConstant propagate constant values of equality predicates and inequality predicates in a condition. func propagateConstant(conditions []expression.Expression) []expression.Expression { if len(conditions) == 0 { return conditions } // Propagate constants in equality predicates. // e.g. for condition: "a = b and b = c and c = a and a = 1"; // we propagate constant as the following step: // first: "1 = b and b = c and c = 1 and a = 1"; // next: "1 = b and 1 = c and c = 1 and a = 1"; // next: "1 = b and 1 = c and 1 = 1 and a = 1"; // next: "1 = b and 1 = c and a = 1"; // e.g for condition: "a = b and b = c and b = 2 and a = 1"; // we propagate constant as the following step: // first: "a = 2 and 2 = c and b = 2 and a = 1"; // next: "a = 2 and 2 = c and b = 2 and 2 = 1"; // next: "0" isSource := make([]bool, len(conditions)) type transitiveEqualityPredicate map[string]*expression.Constant // transitive equality predicates between one column and one constant for { equalities := make(transitiveEqualityPredicate, 0) for i, getOneEquality := 0, false; i < len(conditions) && !getOneEquality; i++ { if isSource[i] { continue } expr, ok := conditions[i].(*expression.ScalarFunction) if !ok { continue } // process the included OR conditions recursively to do the same for CNF item. switch expr.FuncName.L { case ast.OrOr: expressions := expression.SplitDNFItems(conditions[i]) newExpression := make([]expression.Expression, 0) for _, v := range expressions { newExpression = append(newExpression, propagateConstant([]expression.Expression{v})...) } conditions[i] = expression.ComposeDNFCondition(newExpression) isSource[i] = true case ast.AndAnd: newExpression := propagateConstant(expression.SplitCNFItems(conditions[i])) conditions[i] = expression.ComposeCNFCondition(newExpression) isSource[i] = true case ast.EQ: var ( col *expression.Column val *expression.Constant ) leftConst, leftIsConst := expr.Args[0].(*expression.Constant) rightConst, rightIsConst := expr.Args[1].(*expression.Constant) leftCol, leftIsCol := expr.Args[0].(*expression.Column) rightCol, rightIsCol := expr.Args[1].(*expression.Column) if rightIsConst && leftIsCol { col = leftCol val = rightConst } else if leftIsConst && rightIsCol { col = rightCol val = leftConst } else { continue } equalities[string(col.HashCode())] = val isSource[i] = true getOneEquality = true } } if len(equalities) == 0 { break } for i := 0; i < len(conditions); i++ { if isSource[i] { continue } if len(equalities) != 0 { conditions[i] = constantSubstitute(equalities, conditions[i]) } } } // Propagate transitive inequality predicates. // e.g for conditions "a = b and c = d and a = c and g = h and b > 0 and e != 0 and g like 'abc'", // we propagate constant as the following step: // 1. build multiple equality predicates(mep): // =(a, b, c, d), =(g, h). // 2. extract inequality predicates between one constant and one column, // and rewrite them using the root column of a multiple equality predicate: // b > 0, e != 0, g like 'abc' ==> a > 0, g like 'abc'. // ATTENTION: here column 'e' doesn't belong to any mep, so we skip "e != 0". // 3. propagate constants in these inequality predicates, and we finally get: // "a = b and c = d and a = c and e = f and g = h and e != 0 and a > 0 and b > 0 and c > 0 and d > 0 and g like 'abc' and h like 'abc' ". multipleEqualities := make(map[*expression.Column]*expression.Column, 0) for _, cond := range conditions { // build multiple equality predicates. expr, ok := cond.(*expression.ScalarFunction) if ok && expr.FuncName.L == ast.EQ { left, ok1 := expr.Args[0].(*expression.Column) right, ok2 := expr.Args[1].(*expression.Column) if ok1 && ok2 { UnionColumns(left, right, multipleEqualities) } } } if len(multipleEqualities) == 0 { return conditions } inequalityFuncs := map[string]string{ ast.LT: ast.LT, ast.GT: ast.GT, ast.LE: ast.LE, ast.GE: ast.GE, ast.NE: ast.NE, ast.Like: ast.Like, } type inequalityFactor struct { FuncName string Factor []*expression.Constant } type transitiveInEqualityPredicate map[string][]inequalityFactor // transitive inequality predicates between one column and one constant. inequalities := make(transitiveInEqualityPredicate, 0) for i := 0; i < len(conditions); i++ { // extract inequality predicates. var ( column *expression.Column equalCol *expression.Column // the root column corresponding to a column in a multiple equality predicate. val *expression.Constant funcName string ) expr, ok := conditions[i].(*expression.ScalarFunction) if !ok { continue } funcName, ok = inequalityFuncs[expr.FuncName.L] if !ok { continue } leftConst, leftIsConst := expr.Args[0].(*expression.Constant) rightConst, rightIsConst := expr.Args[1].(*expression.Constant) leftCol, leftIsCol := expr.Args[0].(*expression.Column) rightCol, rightIsCol := expr.Args[1].(*expression.Column) if rightIsConst && leftIsCol { column = leftCol val = rightConst } else if leftIsConst && rightIsCol { column = rightCol val = leftConst } else { continue } equalCol, ok = multipleEqualities[column] if !ok { // no need to propagate inequality predicates whose column is only equal to itself. continue } colHashCode := string(equalCol.HashCode()) if funcName == ast.Like { // func 'LIKE' need 3 input arguments, so here we handle it alone. inequalities[colHashCode] = append(inequalities[colHashCode], inequalityFactor{FuncName: ast.Like, Factor: []*expression.Constant{val, expr.Args[2].(*expression.Constant)}}) } else { inequalities[colHashCode] = append(inequalities[colHashCode], inequalityFactor{FuncName: funcName, Factor: []*expression.Constant{val}}) } conditions = append(conditions[:i], conditions[i+1:]...) i-- } if len(inequalities) == 0 { return conditions } for k, v := range multipleEqualities { // propagate constants in inequality predicates. for _, x := range inequalities[string(v.HashCode())] { funcName, factors := x.FuncName, x.Factor if funcName == ast.Like { for i := 0; i < len(factors); i += 2 { newFunc, _ := expression.NewFunction(funcName, types.NewFieldType(mysql.TypeTiny), k, factors[i], factors[i+1]) conditions = append(conditions, newFunc) } } else { for i := 0; i < len(factors); i++ { newFunc, _ := expression.NewFunction(funcName, types.NewFieldType(mysql.TypeTiny), k, factors[i]) conditions = append(conditions, newFunc) i++ } } } } return conditions }
func (e *havingAndOrderbyResolver) addProjectionExpr(v *ast.ColumnNameExpr, projCol *expression.Column) { e.proj.Exprs = append(e.proj.Exprs, projCol) schemaCols, _ := projCol.DeepCopy().(*expression.Column) e.mapper[v] = schemaCols e.proj.schema = append(e.proj.schema, schemaCols) }