// ToImageRect converts a point in the feature pyramid to a rectangle in the image. func (pyr *Generator) ToImageRect(level int, pt image.Point, interior image.Rectangle) image.Rectangle { // Translate interior by position (scaled by rate) and subtract margin offset. rate := pyr.Transform.Rate() offset := pyr.Pad.Margin.TopLeft() scale := pyr.Image.Scales[level] rect := interior.Add(pt.Mul(rate)).Sub(offset) return scaleRect(1/scale, rect) }
func MinInputSize(feat image.Point, conf Config) image.Point { // One feature pixel on all sides. feat = feat.Add(image.Pt(2, 2)) // Multiply by cell size to get pixels. pix := feat.Mul(conf.CellSize) // Add floor(half a cell) on all sides. half := conf.CellSize / 2 pix = pix.Add(image.Pt(half, half).Mul(2)) // Leave one pixel to compute derivatives. pix = pix.Add(image.Pt(1, 1).Mul(2)) return pix }
func eval(t *testing.T, path string, f storage.Image, size image.Point, colors []int) string { var b []byte w := bytes.NewBuffer(b) p := processor.New() f.ValidatedWidth *= u f.ValidatedHeight *= u pixels, err := p.Preprocess(path) if err != nil { t.Fatalf("cannot preprocess image: error=%v", err) } f, err = f.Normalize(pixels.Bounds().Size()) if err != nil { t.Fatalf("fail to normalize: error=%v", err) } if _, err := p.Process(pixels, w, f); err != nil { t.Fatalf("cannot process image: %v", err) return "" } r := bytes.NewReader(w.Bytes()) img, format, err := image.Decode(r) if err != nil { t.Fatalf("cannot decode image: %v", err) return "" } expectedSize := size.Mul(u) rect := img.Bounds() actualSize := rect.Size() if !actualSize.Eq(expectedSize) { t.Fatalf("wrong size expected %v, but actual %v", expectedSize, actualSize) return "" } evalPixels(t, img, size, colors) return format }
// Converts the position of a detection in a feature image to a rectangle in the intensity image. // // Additional arguments are: // the integer downsample rate of the feature transform, // the margin which was added to the image before taking the feature transform, // the rectangular region within the window which corresponds to the annotation. func featPtToImRect(pt image.Point, rate int, margin feat.Margin, interior image.Rectangle) image.Rectangle { return interior.Add(pt.Mul(rate)).Sub(margin.TopLeft()) }
func ExpandedNodeNew(getPositioner GetPositioner, userObj bh.NodeIf, nId bh.NodeIdIf) (ret *ExpandedNode) { positioner := getPositioner(nId) pos := positioner.Position() path := nId.String() config := DrawConfig{ColorInit(ColorOption(NormalExpandedNode)), ColorInit(ColorOption(HighlightExpandedNode)), ColorInit(ColorOption(SelectExpandedNode)), ColorInit(ColorOption(BoxFrame)), ColorInit(ColorOption(Text)), image.Point{global.padX, global.padY}} cconfig := ContainerConfig{expandedPortWidth, expandedPortHeight, 120, 80} // Add children var g bh.SignalGraphTypeIf nt := userObj.ItsType() for _, impl := range nt.Implementation() { if impl.ImplementationType() == bh.NodeTypeGraph { g = impl.Graph() break } } var children []ContainerChild if g != nil { empty := image.Point{} first := image.Point{16, 32} shift := image.Point{16, 16} for i, n := range g.ProcessingNodes() { var ch ContainerChild var mode gr.PositionMode if n.Expanded() { mode = gr.PositionModeExpanded } else { mode = gr.PositionModeNormal } proxy := gr.PathModePositionerProxyNew(n) proxy.SetActivePath(path) proxy.SetActiveMode(mode) log.Printf("ExpandedNodeNew TODO: position of child nodes. path=%s, mode=%v\n", path, mode) chpos := proxy.Position() if chpos == empty { chpos = pos.Add(first.Add(shift.Mul(i))) proxy.SetPosition(chpos) } id := freesp.NodeIdNew(nId, n.Name()) if n.Expanded() { ch = ExpandedNodeNew(getPositioner, n, id) } else { ch = NodeNew(getPositioner, n, id) } children = append(children, ch) } } ret = &ExpandedNode{ContainerInit(children, config, userObj, cconfig), userObj, positioner, nil, nil} ret.ContainerInit() empty := image.Point{} config = DrawConfig{ColorInit(ColorOption(InputPort)), ColorInit(ColorOption(HighlightInPort)), ColorInit(ColorOption(SelectInPort)), ColorInit(ColorOption(BoxFrame)), Color{}, image.Point{}} for i, p := range userObj.InPorts() { pos := p.ModePosition(gr.PositionModeExpanded) if pos == empty { pos = ret.CalcInPortPos(i) } positioner := gr.ModePositionerProxyNew(p, gr.PositionModeExpanded) ret.AddPort(config, p, positioner) } config = DrawConfig{ColorInit(ColorOption(OutputPort)), ColorInit(ColorOption(HighlightOutPort)), ColorInit(ColorOption(SelectOutPort)), ColorInit(ColorOption(BoxFrame)), Color{}, image.Point{}} for i, p := range userObj.OutPorts() { pos := p.ModePosition(gr.PositionModeExpanded) if pos == empty { pos = ret.CalcOutPortPos(i) } positioner := gr.ModePositionerProxyNew(p, gr.PositionModeExpanded) ret.AddPort(config, p, positioner) } for _, n := range g.ProcessingNodes() { from, ok := ret.ChildByName(n.Name()) if !ok { log.Printf("ExpandedNodeNew error: node %s not found\n", n.Name()) continue } for _, p := range n.OutPorts() { fromId := from.OutPortIndex(p.Name()) for _, c := range p.Connections() { to, ok := ret.ChildByName(c.Node().Name()) if ok { toId := to.InPortIndex(c.Name()) ret.connections = append(ret.connections, ConnectionNew(from, to, fromId, toId)) } else { portname, ok := c.Node().PortLink() if !ok { log.Printf("ExpandedNodeNew error: output node %s not linked\n", c.Node().Name()) continue } ownPort, ok := ret.OutPortByName(portname) if !ok { log.Printf("ExpandedNodeNew error: linked port %s of output node %s not found\n", portname, c.Node().Name()) continue } nodePort, ok := from.OutPortByName(p.Name()) if !ok { log.Printf("ExpandedNodeNew error: port %s of output node %s not found\n", p.Name(), from.Name()) continue } ret.portconn = append(ret.portconn, PortConnectorNew(nodePort, ownPort)) } } } } for _, n := range g.InputNodes() { for _, p := range n.OutPorts() { fromlink, ok := p.Node().PortLink() if !ok { log.Printf("ExpandedNodeNew error: input node %s not linked\n", p.Node().Name()) continue } fromPort, ok := ret.InPortByName(fromlink) if !ok { log.Printf("ExpandedNodeNew error: linked port %s of input node %s not found\n", fromlink, n.Name()) continue } for _, c := range p.Connections() { to, ok := ret.ChildByName(c.Node().Name()) if ok { // TODO: connect with node toPort, ok := to.InPortByName(c.Name()) if !ok { log.Printf("ExpandedNodeNew error: port %s of node %s not found\n", c.Name(), to.Name()) continue } ret.portconn = append(ret.portconn, PortConnectorNew(fromPort, toPort)) } else { tolink, ok := c.Node().PortLink() if !ok { log.Printf("ExpandedNodeNew error: output node %s not linked\n", c.Node().Name()) continue } toPort, ok := ret.OutPortByName(tolink) if !ok { log.Printf("ExpandedNodeNew error: linked port %s of output node %s not found\n", tolink, c.Node().Name()) continue } ret.portconn = append(ret.portconn, PortConnectorNew(fromPort, toPort)) } } } } ret.RegisterOnDraw(func(ctxt interface{}) { expandedNodeOnDraw(ret, ctxt) }) return }