func GradientDescent(X *mat64.Dense, y *mat64.Vector, alpha, tolerance float64, maxIters int) *mat64.Vector { // m = Number of Training Examples // n = Number of Features m, n := X.Dims() h := mat64.NewVector(m, nil) partials := mat64.NewVector(n, nil) new_theta := mat64.NewVector(n, nil) Regression: for i := 0; i < maxIters; i++ { // Calculate partial derivatives h.MulVec(X, new_theta) for el := 0; el < m; el++ { val := (h.At(el, 0) - y.At(el, 0)) / float64(m) h.SetVec(el, val) } partials.MulVec(X.T(), h) // Update theta values for el := 0; el < n; el++ { new_val := new_theta.At(el, 0) - (alpha * partials.At(el, 0)) new_theta.SetVec(el, new_val) } // Check the "distance" to the local minumum dist := math.Sqrt(mat64.Dot(partials, partials)) if dist <= tolerance { break Regression } } return new_theta }
// onesDotUnitary performs the equivalent of a Ddot of v with // a ones vector of equal length. v must have have a unitary // vector increment. func onesDotUnitary(alpha float64, v *mat64.Vector) float64 { var sum float64 for _, f := range v.RawVector().Data { sum += alpha * f } return sum }
// dotUnitary performs a simplified scatter-based Ddot operations on // v and the receiver. v must have have a unitary vector increment. func (r compressedRow) dotUnitary(v *mat64.Vector) float64 { var sum float64 vec := v.RawVector().Data for _, e := range r { sum += vec[e.index] * e.value } return sum }
func ExampleCholesky() { // Construct a symmetric positive definite matrix. tmp := mat64.NewDense(4, 4, []float64{ 2, 6, 8, -4, 1, 8, 7, -2, 2, 2, 1, 7, 8, -2, -2, 1, }) var a mat64.SymDense a.SymOuterK(1, tmp) fmt.Printf("a = %0.4v\n", mat64.Formatted(&a, mat64.Prefix(" "))) // Compute the cholesky factorization. var chol mat64.Cholesky if ok := chol.Factorize(&a); !ok { fmt.Println("a matrix is not positive semi-definite.") } // Find the determinant. fmt.Printf("\nThe determinant of a is %0.4g\n\n", chol.Det()) // Use the factorization to solve the system of equations a * x = b. b := mat64.NewVector(4, []float64{1, 2, 3, 4}) var x mat64.Vector if err := x.SolveCholeskyVec(&chol, b); err != nil { fmt.Println("Matrix is near singular: ", err) } fmt.Println("Solve a * x = b") fmt.Printf("x = %0.4v\n", mat64.Formatted(&x, mat64.Prefix(" "))) // Extract the factorization and check that it equals the original matrix. var t mat64.TriDense t.LFromCholesky(&chol) var test mat64.Dense test.Mul(&t, t.T()) fmt.Println() fmt.Printf("L * L^T = %0.4v\n", mat64.Formatted(&a, mat64.Prefix(" "))) // Output: // a = ⎡120 114 -4 -16⎤ // ⎢114 118 11 -24⎥ // ⎢ -4 11 58 17⎥ // ⎣-16 -24 17 73⎦ // // The determinant of a is 1.543e+06 // // Solve a * x = b // x = ⎡ -0.239⎤ // ⎢ 0.2732⎥ // ⎢-0.04681⎥ // ⎣ 0.1031⎦ // // L * L^T = ⎡120 114 -4 -16⎤ // ⎢114 118 11 -24⎥ // ⎢ -4 11 58 17⎥ // ⎣-16 -24 17 73⎦ }
func vectorDistance(vec1, vec2 *mat.Vector) (v float64) { result := mat.NewVector(vec1.Len(), nil) result.SubVec(vec1, vec2) result.MulElemVec(result, result) v = mat.Sum(result) return }
// Scatter copies the values of x into the corresponding locations in the dense // vector y. Both vectors must have the same dimension. func Scatter(y *mat64.Vector, x *Vector) { if x.N != y.Len() { panic("sparse: vector dimension mismatch") } raw := y.RawVector() for i, index := range x.Indices { raw.Data[index*raw.Inc] = x.Data[i] } }
// findIn returns the indexes of the values in vec that match scalar func findIn(scalar float64, vec *mat.Vector) *mat.Vector { var result []float64 for i := 0; i < vec.Len(); i++ { if scalar == vec.At(i, 0) { result = append(result, float64(i)) } } return mat.NewVector(len(result), result) }
// Dot computes the dot product of the sparse vector x with the dense vector y. // The vectors must have the same dimension. func Dot(x *Vector, y *mat64.Vector) (dot float64) { if x.N != y.Len() { panic("sparse: vector dimension mismatch") } raw := y.RawVector() for i, index := range x.Indices { dot += x.Data[i] * raw.Data[index*raw.Inc] } return }
// Gather gathers entries given by indices of the dense vector y into the sparse // vector x. Indices must not be nil. func Gather(x *Vector, y *mat64.Vector, indices []int) { if indices == nil { panic("sparse: slice is nil") } x.reuseAs(y.Len(), len(indices)) copy(x.Indices, indices) raw := y.RawVector() for i, index := range x.Indices { x.Data[i] = raw.Data[index*raw.Inc] } }
// Axpy scales the sparse vector x by alpha and adds the result to the dense // vector y. If alpha is zero, y is not modified. func Axpy(y *mat64.Vector, alpha float64, x *Vector) { if x.N != y.Len() { panic("sparse: vector dimension mismatch") } if alpha == 0 { return } raw := y.RawVector() for i, index := range x.Indices { raw.Data[index*raw.Inc] += alpha * x.Data[i] } }
// rowIndexIn returns a matrix contains the rows in indexes vector func rowIndexIn(indexes *mat.Vector, M mat.Matrix) mat.Matrix { m := indexes.Len() _, n := M.Dims() Res := mat.NewDense(m, n, nil) for i := 0; i < m; i++ { Res.SetRow(i, mat.Row( nil, int(indexes.At(i, 0)), M)) } return Res }
func Cost(x *mat64.Dense, y, theta *mat64.Vector) float64 { //initialize receivers m, _ := x.Dims() h := mat64.NewDense(m, 1, make([]float64, m)) squaredErrors := mat64.NewDense(m, 1, make([]float64, m)) //actual calculus h.Mul(x, theta) squaredErrors.Apply(func(r, c int, v float64) float64 { return math.Pow(h.At(r, c)-y.At(r, c), 2) }, h) j := mat64.Sum(squaredErrors) * 1.0 / (2.0 * float64(m)) return j }
func Solve(a sparse.Matrix, b, xInit *mat64.Vector, settings *Settings, method Method) (result Result, err error) { stats := Stats{ StartTime: time.Now(), } dim, c := a.Dims() if dim != c { panic("iterative: matrix is not square") } if xInit != nil && dim != xInit.Len() { panic("iterative: mismatched size of the initial guess") } if b.Len() != dim { panic("iterative: mismatched size of the right-hand side vector") } if xInit == nil { xInit = mat64.NewVector(dim, nil) } if settings == nil { settings = DefaultSettings(dim) } ctx := Context{ X: mat64.NewVector(dim, nil), Residual: mat64.NewVector(dim, nil), } // X = xInit ctx.X.CopyVec(xInit) if mat64.Norm(ctx.X, math.Inf(1)) > 0 { // Residual = Ax sparse.MulMatVec(ctx.Residual, 1, false, a, ctx.X) stats.MatVecMultiplies++ } // Residual = Ax - b ctx.Residual.SubVec(ctx.Residual, b) if mat64.Norm(ctx.Residual, 2) >= settings.Tolerance { err = iterate(method, a, b, settings, &ctx, &stats) } result = Result{ X: ctx.X, Stats: stats, Runtime: time.Since(stats.StartTime), } return result, err }
// Map produces a vector that is within the bounds of the // rectangular manifold of toroidal space, given a vector // that is on the torus but may be outside these bounds. func (t Torus) Map(v *mat64.Vector) { x := v.At(0, 0) y := v.At(1, 0) remx := x right := t.W / 2 if math.Abs(x) > right { remx = math.Mod(t.W, -x) } remy := y top := t.H / 2 if math.Abs(y) > top { remy = math.Mod(t.H, -y) } v.SetVec(0, remx) v.SetVec(1, remy) }
// StdDev predicts the standard deviation of the function at x. func (g *GP) StdDev(x []float64) float64 { if len(x) != g.inputDim { panic(badInputLength) } // nu_* = k(x_*, k_*) - k_*^T * K^-1 * k_* n := len(g.outputs) kstar := mat64.NewVector(n, nil) for i := 0; i < n; i++ { v := g.kernel.Distance(g.inputs.RawRowView(i), x) kstar.SetVec(i, v) } self := g.kernel.Distance(x, x) var tmp mat64.Vector tmp.SolveCholeskyVec(g.cholK, kstar) var tmp2 mat64.Vector tmp2.MulVec(kstar.T(), &tmp) rt, ct := tmp2.Dims() if rt != 1 || ct != 1 { panic("bad size") } return math.Sqrt(self-tmp2.At(0, 0)) * g.std }
// StdDevBatch predicts the standard deviation at a set of locations of x. func (g *GP) StdDevBatch(std []float64, x mat64.Matrix) []float64 { r, c := x.Dims() if c != g.inputDim { panic(badInputLength) } if std == nil { std = make([]float64, r) } if len(std) != r { panic(badStorage) } // For a single point, the stddev is // sigma = k(x,x) - k_*^T * K^-1 * k_* // where k is the vector of kernels between the input points and the output points // For many points, the formula is: // nu_* = k(x_*, k_*) - k_*^T * K^-1 * k_* // This creates the full covariance matrix which is an rxr matrix. However, // the standard deviations are just the diagonal of this matrix. Instead, be // smart about it and compute the diagonal terms one at a time. kStar := g.formKStar(x) var tmp mat64.Dense tmp.SolveCholesky(g.cholK, kStar) // set k(x_*, x_*) into std then subtract k_*^T K^-1 k_* , computed one row at a time var tmp2 mat64.Vector row := make([]float64, c) for i := range std { for k := 0; k < c; k++ { row[k] = x.At(i, k) } std[i] = g.kernel.Distance(row, row) tmp2.MulVec(kStar.ColView(i).T(), tmp.ColView(i)) rt, ct := tmp2.Dims() if rt != 1 && ct != 1 { panic("bad size") } std[i] -= tmp2.At(0, 0) std[i] = math.Sqrt(std[i]) } // Need to scale the standard deviation to be in the same units as y. floats.Scale(g.std, std) return std }
func BlasVec2UserVec(v *mat64.Vector) UserVec { u := UserVec{} u.X = v.At(0, 0) u.Y = v.At(1, 0) return u }
// mulVecUnitary multiplies the receiver by the src vector, storing // the result in dst. It assumes src and dst are the same length as m // and that both have unitary vector increments. func (m rowCompressedMatrix) mulVecUnitary(dst, src *mat64.Vector) { dMat := dst.RawVector().Data for i, r := range m { dMat[i] = r.dotUnitary(src) } }
func VectorToMatrix(vector *mat64.Vector) *mat64.Dense { vec := vector.RawVector() return mat64.NewDense(1, len(vec.Data), vec.Data) }
// ConditionNormal returns the Normal distribution that is the receiver conditioned // on the input evidence. The returned multivariate normal has dimension // n - len(observed), where n is the dimension of the original receiver. The updated // mean and covariance are // mu = mu_un + sigma_{ob,un}^T * sigma_{ob,ob}^-1 (v - mu_ob) // sigma = sigma_{un,un} - sigma_{ob,un}^T * sigma_{ob,ob}^-1 * sigma_{ob,un} // where mu_un and mu_ob are the original means of the unobserved and observed // variables respectively, sigma_{un,un} is the unobserved subset of the covariance // matrix, sigma_{ob,ob} is the observed subset of the covariance matrix, and // sigma_{un,ob} are the cross terms. The elements of x_2 have been observed with // values v. The dimension order is preserved during conditioning, so if the value // of dimension 1 is observed, the returned normal represents dimensions {0, 2, ...} // of the original Normal distribution. // // ConditionNormal returns {nil, false} if there is a failure during the update. // Mathematically this is impossible, but can occur with finite precision arithmetic. func (n *Normal) ConditionNormal(observed []int, values []float64, src *rand.Rand) (*Normal, bool) { if len(observed) == 0 { panic("normal: no observed value") } if len(observed) != len(values) { panic("normal: input slice length mismatch") } for _, v := range observed { if v < 0 || v >= n.Dim() { panic("normal: observed value out of bounds") } } ob := len(observed) unob := n.Dim() - ob obMap := make(map[int]struct{}) for _, v := range observed { if _, ok := obMap[v]; ok { panic("normal: observed dimension occurs twice") } obMap[v] = struct{}{} } if len(observed) == n.Dim() { panic("normal: all dimensions observed") } unobserved := make([]int, 0, unob) for i := 0; i < n.Dim(); i++ { if _, ok := obMap[i]; !ok { unobserved = append(unobserved, i) } } mu1 := make([]float64, unob) for i, v := range unobserved { mu1[i] = n.mu[v] } mu2 := make([]float64, ob) // really v - mu2 for i, v := range observed { mu2[i] = values[i] - n.mu[v] } n.setSigma() var sigma11, sigma22 mat64.SymDense sigma11.SubsetSym(n.sigma, unobserved) sigma22.SubsetSym(n.sigma, observed) sigma21 := mat64.NewDense(ob, unob, nil) for i, r := range observed { for j, c := range unobserved { v := n.sigma.At(r, c) sigma21.Set(i, j, v) } } var chol mat64.Cholesky ok := chol.Factorize(&sigma22) if !ok { return nil, ok } // Compute sigma_{2,1}^T * sigma_{2,2}^-1 (v - mu_2). v := mat64.NewVector(ob, mu2) var tmp, tmp2 mat64.Vector err := tmp.SolveCholeskyVec(&chol, v) if err != nil { return nil, false } tmp2.MulVec(sigma21.T(), &tmp) // Compute sigma_{2,1}^T * sigma_{2,2}^-1 * sigma_{2,1}. // TODO(btracey): Should this be a method of SymDense? var tmp3, tmp4 mat64.Dense err = tmp3.SolveCholesky(&chol, sigma21) if err != nil { return nil, false } tmp4.Mul(sigma21.T(), &tmp3) for i := range mu1 { mu1[i] += tmp2.At(i, 0) } // TODO(btracey): If tmp2 can constructed with a method, then this can be // replaced with SubSym. for i := 0; i < len(unobserved); i++ { for j := i; j < len(unobserved); j++ { v := sigma11.At(i, j) sigma11.SetSym(i, j, v-tmp4.At(i, j)) } } return NewNormal(mu1, &sigma11, src) }
func dokMulMatVec(y *mat64.Vector, alpha float64, transA bool, a *DOK, x *mat64.Vector) { r, c := a.Dims() if transA { if r != x.Len() || c != y.Len() { panic("sparse: dimension mismatch") } } else { if r != y.Len() || c != x.Len() { panic("sparse: dimension mismatch") } } if alpha == 0 { return } xRaw := x.RawVector() yRaw := y.RawVector() if transA { for ij, aij := range a.data { yRaw.Data[ij[1]*yRaw.Inc] += alpha * aij * xRaw.Data[ij[0]*xRaw.Inc] } } else { for ij, aij := range a.data { yRaw.Data[ij[0]*yRaw.Inc] += alpha * aij * xRaw.Data[ij[1]*xRaw.Inc] } } }
func vec3(vec *mat64.Vector) Vec3 { return Vec3{vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)} }
func simplex(initialBasic []int, c []float64, A mat64.Matrix, b []float64, tol float64) (float64, []float64, []int, error) { err := verifyInputs(initialBasic, c, A, b) if err != nil { if err == ErrUnbounded { return math.Inf(-1), nil, nil, ErrUnbounded } return math.NaN(), nil, nil, err } m, n := A.Dims() // There is at least one optimal solution to the LP which is at the intersection // to a set of constraint boundaries. For a standard form LP with m variables // and n equality constraints, at least m-n elements of x must equal zero // at optimality. The Simplex algorithm solves the standard-form LP by starting // at an initial constraint vertex and successively moving to adjacent constraint // vertices. At every vertex, the set of non-zero x values is the "basic // feasible solution". The list of non-zero x's are maintained in basicIdxs, // the respective columns of A are in ab, and the actual non-zero values of // x are in xb. // // The LP is equality constrained such that A * x = b. This can be expanded // to // ab * xb + an * xn = b // where ab are the columns of a in the basic set, and an are all of the // other columns. Since each element of xn is zero by definition, this means // that for all feasible solutions xb = ab^-1 * b. // // Before the simplex algorithm can start, an initial feasible solution must // be found. If initialBasic is non-nil a feasible solution has been supplied. // Otherwise the "Phase I" problem must be solved to find an initial feasible // solution. var basicIdxs []int // The indices of the non-zero x values. var ab *mat64.Dense // The subset of columns of A listed in basicIdxs. var xb []float64 // The non-zero elements of x. xb = ab^-1 b if initialBasic != nil { // InitialBasic supplied. Panic if incorrect length or infeasible. if len(initialBasic) != m { panic("lp: incorrect number of initial vectors") } ab = extractColumns(A, initialBasic) xb, err = initializeFromBasic(ab, b) if err != nil { panic(err) } basicIdxs = make([]int, len(initialBasic)) copy(basicIdxs, initialBasic) } else { // No inital basis supplied. Solve the PhaseI problem. basicIdxs, ab, xb, err = findInitialBasic(A, b) if err != nil { return math.NaN(), nil, nil, err } } // basicIdxs contains the indexes for an initial feasible solution, // ab contains the extracted columns of A, and xb contains the feasible // solution. All x not in the basic set are 0 by construction. // nonBasicIdx is the set of nonbasic variables. nonBasicIdx := make([]int, 0, n-m) inBasic := make(map[int]struct{}) for _, v := range basicIdxs { inBasic[v] = struct{}{} } for i := 0; i < n; i++ { _, ok := inBasic[i] if !ok { nonBasicIdx = append(nonBasicIdx, i) } } // cb is the subset of c for the basic variables. an and cn // are the equivalents to ab and cb but for the nonbasic variables. cb := make([]float64, len(basicIdxs)) for i, idx := range basicIdxs { cb[i] = c[idx] } cn := make([]float64, len(nonBasicIdx)) for i, idx := range nonBasicIdx { cn[i] = c[idx] } an := extractColumns(A, nonBasicIdx) bVec := mat64.NewVector(len(b), b) cbVec := mat64.NewVector(len(cb), cb) // Temporary data needed each iteration. (Described later) r := make([]float64, n-m) move := make([]float64, m) // Solve the linear program starting from the initial feasible set. This is // the "Phase 2" problem. // // Algorithm: // 1) Compute the "reduced costs" for the non-basic variables. The reduced // costs are the lagrange multipliers of the constraints. // r = cn - an^T * ab^-T * cb // 2) If all of the reduced costs are positive, no improvement is possible, // and the solution is optimal (xn can only increase because of // non-negativity constraints). Otherwise, the solution can be improved and // one element will be exchanged in the basic set. // 3) Choose the x_n with the most negative value of r. Call this value xe. // This variable will be swapped into the basic set. // 4) Increase xe until the next constraint boundary is met. This will happen // when the first element in xb becomes 0. The distance xe can increase before // a given element in xb becomes negative can be found from // xb = Ab^-1 b - Ab^-1 An xn // = Ab^-1 b - Ab^-1 Ae xe // = bhat + d x_e // xe = bhat_i / - d_i // where Ae is the column of A corresponding to xe. // The constraining basic index is the first index for which this is true, // so remove the element which is min_i (bhat_i / -d_i), assuming d_i is negative. // If no d_i is less than 0, then the problem is unbounded. // 5) If the new xe is 0 (that is, bhat_i == 0), then this location is at // the intersection of several constraints. Use the Bland rule instead // of the rule in step 4 to avoid cycling. for { // Compute reduced costs -- r = cn - an^T ab^-T cb var tmp mat64.Vector err = tmp.SolveVec(ab.T(), cbVec) if err != nil { break } data := make([]float64, n-m) tmp2 := mat64.NewVector(n-m, data) tmp2.MulVec(an.T(), &tmp) floats.SubTo(r, cn, data) // Replace the most negative element in the simplex. If there are no // negative entries then the optimal solution has been found. minIdx := floats.MinIdx(r) if r[minIdx] >= -tol { break } for i, v := range r { if math.Abs(v) < rRoundTol { r[i] = 0 } } // Compute the moving distance. err = computeMove(move, minIdx, A, ab, xb, nonBasicIdx) if err != nil { if err == ErrUnbounded { return math.Inf(-1), nil, nil, ErrUnbounded } break } // Replace the basic index along the tightest constraint. replace := floats.MinIdx(move) if move[replace] <= 0 { replace, minIdx, err = replaceBland(A, ab, xb, basicIdxs, nonBasicIdx, r, move) if err != nil { if err == ErrUnbounded { return math.Inf(-1), nil, nil, ErrUnbounded } break } } // Replace the constrained basicIdx with the newIdx. basicIdxs[replace], nonBasicIdx[minIdx] = nonBasicIdx[minIdx], basicIdxs[replace] cb[replace], cn[minIdx] = cn[minIdx], cb[replace] tmpCol1 := mat64.Col(nil, replace, ab) tmpCol2 := mat64.Col(nil, minIdx, an) ab.SetCol(replace, tmpCol2) an.SetCol(minIdx, tmpCol1) // Compute the new xb. xbVec := mat64.NewVector(len(xb), xb) err = xbVec.SolveVec(ab, bVec) if err != nil { break } } // Found the optimum successfully or died trying. The basic variables get // their values, and the non-basic variables are all zero. opt := floats.Dot(cb, xb) xopt := make([]float64, n) for i, v := range basicIdxs { xopt[v] = xb[i] } return opt, xopt, basicIdxs, err }
func testSimplex(t *testing.T, initialBasic []int, c []float64, a mat64.Matrix, b []float64, convergenceTol float64) error { primalOpt, primalX, _, errPrimal := simplex(initialBasic, c, a, b, convergenceTol) if errPrimal == nil { // No error solving the simplex, check that the solution is feasible. var bCheck mat64.Vector bCheck.MulVec(a, mat64.NewVector(len(primalX), primalX)) if !mat64.EqualApprox(&bCheck, mat64.NewVector(len(b), b), 1e-10) { t.Errorf("No error in primal but solution infeasible") } } primalInfeasible := errPrimal == ErrInfeasible primalUnbounded := errPrimal == ErrUnbounded primalBounded := errPrimal == nil primalASingular := errPrimal == ErrSingular primalZeroRow := errPrimal == ErrZeroRow primalZeroCol := errPrimal == ErrZeroColumn primalBad := !primalInfeasible && !primalUnbounded && !primalBounded && !primalASingular && !primalZeroRow && !primalZeroCol // It's an error if it's not one of the known returned errors. If it's // singular the problem is undefined and so the result cannot be compared // to the dual. if errPrimal == ErrSingular || primalBad { if primalBad { t.Errorf("non-known error returned: %s", errPrimal) } return errPrimal } // Compare the result to the answer found from solving the dual LP. // Construct and solve the dual LP. // Standard Form: // minimize c^T * x // subject to A * x = b, x >= 0 // The dual of this problem is // maximize -b^T * nu // subject to A^T * nu + c >= 0 // Which is // minimize b^T * nu // subject to -A^T * nu <= c negAT := &mat64.Dense{} negAT.Clone(a.T()) negAT.Scale(-1, negAT) cNew, aNew, bNew := Convert(b, negAT, c, nil, nil) dualOpt, dualX, _, errDual := simplex(nil, cNew, aNew, bNew, convergenceTol) if errDual == nil { // Check that the dual is feasible var bCheck mat64.Vector bCheck.MulVec(aNew, mat64.NewVector(len(dualX), dualX)) if !mat64.EqualApprox(&bCheck, mat64.NewVector(len(bNew), bNew), 1e-10) { t.Errorf("No error in dual but solution infeasible") } } // Check about the zero status. if errPrimal == ErrZeroRow || errPrimal == ErrZeroColumn { return errPrimal } // If the primal problem is feasible, then the primal and the dual should // be the same answer. We have flopped the sign in the dual (minimizing // b^T *nu instead of maximizing -b^T*nu), so flip it back. if errPrimal == nil { if errDual != nil { fmt.Println("errDual", errDual) panic("here") t.Errorf("Primal feasible but dual errored: %s", errDual) } dualOpt *= -1 if !floats.EqualWithinAbsOrRel(dualOpt, primalOpt, convergenceTol, convergenceTol) { t.Errorf("Primal and dual value mismatch. Primal %v, dual %v.", primalOpt, dualOpt) } } // If the primal problem is unbounded, then the dual should be infeasible. if errPrimal == ErrUnbounded && errDual != ErrInfeasible { t.Errorf("Primal unbounded but dual not infeasible. ErrDual = %s", errDual) } // If the dual is unbounded, then the primal should be infeasible. if errDual == ErrUnbounded && errPrimal != ErrInfeasible { t.Errorf("Dual unbounded but primal not infeasible. ErrDual = %s", errPrimal) } // If the primal is infeasible, then the dual should be either infeasible // or unbounded. if errPrimal == ErrInfeasible { if errDual != ErrUnbounded && errDual != ErrInfeasible && errDual != ErrZeroColumn { t.Errorf("Primal infeasible but dual not infeasible or unbounded: %s", errDual) } } return errPrimal }
func MultiHypothesis(x *mat64.Dense, theta *mat64.Vector) *mat64.Vector { var res mat64.Dense res.Mul(theta.T(), x) return res.RowView(0) }
// Throttle behaves as Move but scales the speed func (r Rudder) Jolt(pos *mat64.Vector, scale float64) { pos.AddScaledVec(pos, scale*r.S, r.D) }
func csrMulMatVec(y *mat64.Vector, alpha float64, transA bool, a *CSR, x *mat64.Vector) { r, c := a.Dims() if transA { if r != x.Len() || c != y.Len() { panic("sparse: dimension mismatch") } } else { if r != y.Len() || c != x.Len() { panic("sparse: dimension mismatch") } } if alpha == 0 { return } yRaw := y.RawVector() if transA { row := Vector{N: y.Len()} for i := 0; i < r; i++ { start := a.rowIndex[i] end := a.rowIndex[i+1] row.Data = a.values[start:end] row.Indices = a.columns[start:end] Axpy(y, alpha*x.At(i, 0), &row) } } else { row := Vector{N: x.Len()} for i := 0; i < r; i++ { start := a.rowIndex[i] end := a.rowIndex[i+1] row.Data = a.values[start:end] row.Indices = a.columns[start:end] yRaw.Data[i*yRaw.Inc] += alpha * Dot(&row, x) } } }