func GradientDescent(X *mat64.Dense, y *mat64.Vector, alpha, tolerance float64, maxIters int) *mat64.Vector { // m = Number of Training Examples // n = Number of Features m, n := X.Dims() h := mat64.NewVector(m, nil) partials := mat64.NewVector(n, nil) new_theta := mat64.NewVector(n, nil) Regression: for i := 0; i < maxIters; i++ { // Calculate partial derivatives h.MulVec(X, new_theta) for el := 0; el < m; el++ { val := (h.At(el, 0) - y.At(el, 0)) / float64(m) h.SetVec(el, val) } partials.MulVec(X.T(), h) // Update theta values for el := 0; el < n; el++ { new_val := new_theta.At(el, 0) - (alpha * partials.At(el, 0)) new_theta.SetVec(el, new_val) } // Check the "distance" to the local minumum dist := math.Sqrt(mat64.Dot(partials, partials)) if dist <= tolerance { break Regression } } return new_theta }
// findIn returns the indexes of the values in vec that match scalar func findIn(scalar float64, vec *mat.Vector) *mat.Vector { var result []float64 for i := 0; i < vec.Len(); i++ { if scalar == vec.At(i, 0) { result = append(result, float64(i)) } } return mat.NewVector(len(result), result) }
// rowIndexIn returns a matrix contains the rows in indexes vector func rowIndexIn(indexes *mat.Vector, M mat.Matrix) mat.Matrix { m := indexes.Len() _, n := M.Dims() Res := mat.NewDense(m, n, nil) for i := 0; i < m; i++ { Res.SetRow(i, mat.Row( nil, int(indexes.At(i, 0)), M)) } return Res }
func Cost(x *mat64.Dense, y, theta *mat64.Vector) float64 { //initialize receivers m, _ := x.Dims() h := mat64.NewDense(m, 1, make([]float64, m)) squaredErrors := mat64.NewDense(m, 1, make([]float64, m)) //actual calculus h.Mul(x, theta) squaredErrors.Apply(func(r, c int, v float64) float64 { return math.Pow(h.At(r, c)-y.At(r, c), 2) }, h) j := mat64.Sum(squaredErrors) * 1.0 / (2.0 * float64(m)) return j }
// Map produces a vector that is within the bounds of the // rectangular manifold of toroidal space, given a vector // that is on the torus but may be outside these bounds. func (t Torus) Map(v *mat64.Vector) { x := v.At(0, 0) y := v.At(1, 0) remx := x right := t.W / 2 if math.Abs(x) > right { remx = math.Mod(t.W, -x) } remy := y top := t.H / 2 if math.Abs(y) > top { remy = math.Mod(t.H, -y) } v.SetVec(0, remx) v.SetVec(1, remy) }
// StdDevBatch predicts the standard deviation at a set of locations of x. func (g *GP) StdDevBatch(std []float64, x mat64.Matrix) []float64 { r, c := x.Dims() if c != g.inputDim { panic(badInputLength) } if std == nil { std = make([]float64, r) } if len(std) != r { panic(badStorage) } // For a single point, the stddev is // sigma = k(x,x) - k_*^T * K^-1 * k_* // where k is the vector of kernels between the input points and the output points // For many points, the formula is: // nu_* = k(x_*, k_*) - k_*^T * K^-1 * k_* // This creates the full covariance matrix which is an rxr matrix. However, // the standard deviations are just the diagonal of this matrix. Instead, be // smart about it and compute the diagonal terms one at a time. kStar := g.formKStar(x) var tmp mat64.Dense tmp.SolveCholesky(g.cholK, kStar) // set k(x_*, x_*) into std then subtract k_*^T K^-1 k_* , computed one row at a time var tmp2 mat64.Vector row := make([]float64, c) for i := range std { for k := 0; k < c; k++ { row[k] = x.At(i, k) } std[i] = g.kernel.Distance(row, row) tmp2.MulVec(kStar.ColView(i).T(), tmp.ColView(i)) rt, ct := tmp2.Dims() if rt != 1 && ct != 1 { panic("bad size") } std[i] -= tmp2.At(0, 0) std[i] = math.Sqrt(std[i]) } // Need to scale the standard deviation to be in the same units as y. floats.Scale(g.std, std) return std }
// StdDev predicts the standard deviation of the function at x. func (g *GP) StdDev(x []float64) float64 { if len(x) != g.inputDim { panic(badInputLength) } // nu_* = k(x_*, k_*) - k_*^T * K^-1 * k_* n := len(g.outputs) kstar := mat64.NewVector(n, nil) for i := 0; i < n; i++ { v := g.kernel.Distance(g.inputs.RawRowView(i), x) kstar.SetVec(i, v) } self := g.kernel.Distance(x, x) var tmp mat64.Vector tmp.SolveCholeskyVec(g.cholK, kstar) var tmp2 mat64.Vector tmp2.MulVec(kstar.T(), &tmp) rt, ct := tmp2.Dims() if rt != 1 || ct != 1 { panic("bad size") } return math.Sqrt(self-tmp2.At(0, 0)) * g.std }
func csrMulMatVec(y *mat64.Vector, alpha float64, transA bool, a *CSR, x *mat64.Vector) { r, c := a.Dims() if transA { if r != x.Len() || c != y.Len() { panic("sparse: dimension mismatch") } } else { if r != y.Len() || c != x.Len() { panic("sparse: dimension mismatch") } } if alpha == 0 { return } yRaw := y.RawVector() if transA { row := Vector{N: y.Len()} for i := 0; i < r; i++ { start := a.rowIndex[i] end := a.rowIndex[i+1] row.Data = a.values[start:end] row.Indices = a.columns[start:end] Axpy(y, alpha*x.At(i, 0), &row) } } else { row := Vector{N: x.Len()} for i := 0; i < r; i++ { start := a.rowIndex[i] end := a.rowIndex[i+1] row.Data = a.values[start:end] row.Indices = a.columns[start:end] yRaw.Data[i*yRaw.Inc] += alpha * Dot(&row, x) } } }
// ConditionNormal returns the Normal distribution that is the receiver conditioned // on the input evidence. The returned multivariate normal has dimension // n - len(observed), where n is the dimension of the original receiver. The updated // mean and covariance are // mu = mu_un + sigma_{ob,un}^T * sigma_{ob,ob}^-1 (v - mu_ob) // sigma = sigma_{un,un} - sigma_{ob,un}^T * sigma_{ob,ob}^-1 * sigma_{ob,un} // where mu_un and mu_ob are the original means of the unobserved and observed // variables respectively, sigma_{un,un} is the unobserved subset of the covariance // matrix, sigma_{ob,ob} is the observed subset of the covariance matrix, and // sigma_{un,ob} are the cross terms. The elements of x_2 have been observed with // values v. The dimension order is preserved during conditioning, so if the value // of dimension 1 is observed, the returned normal represents dimensions {0, 2, ...} // of the original Normal distribution. // // ConditionNormal returns {nil, false} if there is a failure during the update. // Mathematically this is impossible, but can occur with finite precision arithmetic. func (n *Normal) ConditionNormal(observed []int, values []float64, src *rand.Rand) (*Normal, bool) { if len(observed) == 0 { panic("normal: no observed value") } if len(observed) != len(values) { panic("normal: input slice length mismatch") } for _, v := range observed { if v < 0 || v >= n.Dim() { panic("normal: observed value out of bounds") } } ob := len(observed) unob := n.Dim() - ob obMap := make(map[int]struct{}) for _, v := range observed { if _, ok := obMap[v]; ok { panic("normal: observed dimension occurs twice") } obMap[v] = struct{}{} } if len(observed) == n.Dim() { panic("normal: all dimensions observed") } unobserved := make([]int, 0, unob) for i := 0; i < n.Dim(); i++ { if _, ok := obMap[i]; !ok { unobserved = append(unobserved, i) } } mu1 := make([]float64, unob) for i, v := range unobserved { mu1[i] = n.mu[v] } mu2 := make([]float64, ob) // really v - mu2 for i, v := range observed { mu2[i] = values[i] - n.mu[v] } n.setSigma() var sigma11, sigma22 mat64.SymDense sigma11.SubsetSym(n.sigma, unobserved) sigma22.SubsetSym(n.sigma, observed) sigma21 := mat64.NewDense(ob, unob, nil) for i, r := range observed { for j, c := range unobserved { v := n.sigma.At(r, c) sigma21.Set(i, j, v) } } var chol mat64.Cholesky ok := chol.Factorize(&sigma22) if !ok { return nil, ok } // Compute sigma_{2,1}^T * sigma_{2,2}^-1 (v - mu_2). v := mat64.NewVector(ob, mu2) var tmp, tmp2 mat64.Vector err := tmp.SolveCholeskyVec(&chol, v) if err != nil { return nil, false } tmp2.MulVec(sigma21.T(), &tmp) // Compute sigma_{2,1}^T * sigma_{2,2}^-1 * sigma_{2,1}. // TODO(btracey): Should this be a method of SymDense? var tmp3, tmp4 mat64.Dense err = tmp3.SolveCholesky(&chol, sigma21) if err != nil { return nil, false } tmp4.Mul(sigma21.T(), &tmp3) for i := range mu1 { mu1[i] += tmp2.At(i, 0) } // TODO(btracey): If tmp2 can constructed with a method, then this can be // replaced with SubSym. for i := 0; i < len(unobserved); i++ { for j := i; j < len(unobserved); j++ { v := sigma11.At(i, j) sigma11.SetSym(i, j, v-tmp4.At(i, j)) } } return NewNormal(mu1, &sigma11, src) }
func vec3(vec *mat64.Vector) Vec3 { return Vec3{vec.At(0, 0), vec.At(1, 0), vec.At(2, 0)} }
func BlasVec2UserVec(v *mat64.Vector) UserVec { u := UserVec{} u.X = v.At(0, 0) u.Y = v.At(1, 0) return u }