Example #1
0
// onesDotUnitary performs the equivalent of a Ddot of v with
// a ones vector of equal length. v must have have a unitary
// vector increment.
func onesDotUnitary(alpha float64, v *mat64.Vector) float64 {
	var sum float64
	for _, f := range v.RawVector().Data {
		sum += alpha * f
	}
	return sum
}
Example #2
0
func dokMulMatVec(y *mat64.Vector, alpha float64, transA bool, a *DOK, x *mat64.Vector) {
	r, c := a.Dims()
	if transA {
		if r != x.Len() || c != y.Len() {
			panic("sparse: dimension mismatch")
		}
	} else {
		if r != y.Len() || c != x.Len() {
			panic("sparse: dimension mismatch")
		}
	}

	if alpha == 0 {
		return
	}

	xRaw := x.RawVector()
	yRaw := y.RawVector()
	if transA {
		for ij, aij := range a.data {
			yRaw.Data[ij[1]*yRaw.Inc] += alpha * aij * xRaw.Data[ij[0]*xRaw.Inc]
		}
	} else {
		for ij, aij := range a.data {
			yRaw.Data[ij[0]*yRaw.Inc] += alpha * aij * xRaw.Data[ij[1]*xRaw.Inc]
		}
	}
}
Example #3
0
// dotUnitary performs a simplified scatter-based Ddot operations on
// v and the receiver. v must have have a unitary vector increment.
func (r compressedRow) dotUnitary(v *mat64.Vector) float64 {
	var sum float64
	vec := v.RawVector().Data
	for _, e := range r {
		sum += vec[e.index] * e.value
	}
	return sum
}
Example #4
0
// Scatter copies the values of x into the corresponding locations in the dense
// vector y. Both vectors must have the same dimension.
func Scatter(y *mat64.Vector, x *Vector) {
	if x.N != y.Len() {
		panic("sparse: vector dimension mismatch")
	}

	raw := y.RawVector()
	for i, index := range x.Indices {
		raw.Data[index*raw.Inc] = x.Data[i]
	}
}
Example #5
0
// Dot computes the dot product of the sparse vector x with the dense vector y.
// The vectors must have the same dimension.
func Dot(x *Vector, y *mat64.Vector) (dot float64) {
	if x.N != y.Len() {
		panic("sparse: vector dimension mismatch")
	}

	raw := y.RawVector()
	for i, index := range x.Indices {
		dot += x.Data[i] * raw.Data[index*raw.Inc]
	}
	return
}
Example #6
0
// Gather gathers entries given by indices of the dense vector y into the sparse
// vector x. Indices must not be nil.
func Gather(x *Vector, y *mat64.Vector, indices []int) {
	if indices == nil {
		panic("sparse: slice is nil")
	}

	x.reuseAs(y.Len(), len(indices))
	copy(x.Indices, indices)
	raw := y.RawVector()
	for i, index := range x.Indices {
		x.Data[i] = raw.Data[index*raw.Inc]
	}
}
Example #7
0
// Axpy scales the sparse vector x by alpha and adds the result to the dense
// vector y. If alpha is zero, y is not modified.
func Axpy(y *mat64.Vector, alpha float64, x *Vector) {
	if x.N != y.Len() {
		panic("sparse: vector dimension mismatch")
	}

	if alpha == 0 {
		return
	}
	raw := y.RawVector()
	for i, index := range x.Indices {
		raw.Data[index*raw.Inc] += alpha * x.Data[i]
	}
}
Example #8
0
func csrMulMatVec(y *mat64.Vector, alpha float64, transA bool, a *CSR, x *mat64.Vector) {
	r, c := a.Dims()
	if transA {
		if r != x.Len() || c != y.Len() {
			panic("sparse: dimension mismatch")
		}
	} else {
		if r != y.Len() || c != x.Len() {
			panic("sparse: dimension mismatch")
		}
	}

	if alpha == 0 {
		return
	}

	yRaw := y.RawVector()
	if transA {
		row := Vector{N: y.Len()}
		for i := 0; i < r; i++ {
			start := a.rowIndex[i]
			end := a.rowIndex[i+1]
			row.Data = a.values[start:end]
			row.Indices = a.columns[start:end]
			Axpy(y, alpha*x.At(i, 0), &row)
		}
	} else {
		row := Vector{N: x.Len()}
		for i := 0; i < r; i++ {
			start := a.rowIndex[i]
			end := a.rowIndex[i+1]
			row.Data = a.values[start:end]
			row.Indices = a.columns[start:end]
			yRaw.Data[i*yRaw.Inc] += alpha * Dot(&row, x)
		}
	}
}
Example #9
0
// mulVecUnitary multiplies the receiver by the src vector, storing
// the result in dst. It assumes src and dst are the same length as m
// and that both have unitary vector increments.
func (m rowCompressedMatrix) mulVecUnitary(dst, src *mat64.Vector) {
	dMat := dst.RawVector().Data
	for i, r := range m {
		dMat[i] = r.dotUnitary(src)
	}
}
Example #10
0
func VectorToMatrix(vector *mat64.Vector) *mat64.Dense {
	vec := vector.RawVector()
	return mat64.NewDense(1, len(vec.Data), vec.Data)
}